apply networks are now loop free
This commit is contained in:
@ -22,7 +22,9 @@ class SparseLayer(nn.Module):
|
||||
self.depth_dim = depth
|
||||
self.hidden_dim = width
|
||||
self.out_dim = out
|
||||
self.dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
|
||||
dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
|
||||
self.dummy_net_shapes = [list(x.shape) for x in dummy_net.parameters()]
|
||||
self.dummy_net_weight_pos_enc = dummy_net._weight_pos_enc
|
||||
|
||||
self.sparse_sub_layer = list()
|
||||
self.indices = list()
|
||||
@ -37,18 +39,14 @@ class SparseLayer(nn.Module):
|
||||
self.weights.append(weights)
|
||||
|
||||
def coo_sparse_layer(self, layer_id):
|
||||
layer_shape = list(self.dummy_net.parameters())[layer_id].shape
|
||||
layer_shape = self.dummy_net_shapes[layer_id]
|
||||
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
|
||||
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T)
|
||||
values = torch.nn.Parameter(
|
||||
torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]))), requires_grad=True
|
||||
)
|
||||
values = torch.nn.Parameter(torch.randn((np.prod((*layer_shape, self.nr_nets)).item())), requires_grad=True)
|
||||
|
||||
return indices, values, sparse_diagonal.shape
|
||||
|
||||
def get_self_train_inputs_and_targets(self):
|
||||
encoding_matrix, mask = self.dummy_net._weight_pos_enc
|
||||
|
||||
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
|
||||
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2
|
||||
# and first hidden*out weights of layer3 = first net
|
||||
@ -57,6 +55,13 @@ class SparseLayer(nn.Module):
|
||||
# [nr_net*[nr_weights]]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
|
||||
# (16, 25)
|
||||
|
||||
encoding_matrix, mask = self.dummy_net_weight_pos_enc
|
||||
weight_device = weights_per_net[0].device
|
||||
if weight_device != encoding_matrix.device or weight_device != mask.device:
|
||||
encoding_matrix, mask = encoding_matrix.to(weight_device), mask.to(weight_device)
|
||||
self.dummy_net_weight_pos_enc = encoding_matrix, mask
|
||||
|
||||
inputs = torch.hstack(
|
||||
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
|
||||
for i in range(self.nr_nets)]
|
||||
@ -80,6 +85,24 @@ class SparseLayer(nn.Module):
|
||||
particles.apply_weights(weights)
|
||||
return self._particles
|
||||
|
||||
@property
|
||||
def particle_weights(self):
|
||||
all_weights = [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
|
||||
weights_per_net = [torch.cat([layer[i] for layer in all_weights]).view(-1, 1) for i in
|
||||
range(self.nr_nets)] # [nr_net*[nr_weights]]
|
||||
return weights_per_net
|
||||
|
||||
def replace_weights_by_particles(self, particles):
|
||||
assert len(particles) == self.nr_nets
|
||||
|
||||
# Particle Weight Update
|
||||
all_weights = [list(particle.parameters()) for particle in particles]
|
||||
all_weights = [torch.cat(x).view(-1) for x in zip(*all_weights)]
|
||||
# [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
|
||||
for widx, (weights, key) in enumerate(zip(all_weights, self.state_dict().keys())):
|
||||
self.state_dict()[key] = weights[:]
|
||||
return self
|
||||
|
||||
def __call__(self, x):
|
||||
for indices, diag_shapes, weights in zip(self.indices, self.diag_shapes, self.weights):
|
||||
s = torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
|
||||
@ -119,9 +142,12 @@ def test_sparse_layer():
|
||||
|
||||
def embed_batch(x, repeat_dim):
|
||||
# x of shape (batchsize, flat_img_dim)
|
||||
x = x.unsqueeze(-1) #(batchsize, flat_img_dim, 1)
|
||||
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||
|
||||
# (batchsize, flat_img_dim, 1)
|
||||
x = x.unsqueeze(-1)
|
||||
# (batchsize, flat_img_dim, encoding_dim*repeat_dim)
|
||||
# torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
|
||||
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim)
|
||||
|
||||
def embed_vector(x, repeat_dim):
|
||||
# x of shape [flat_img_dim]
|
||||
@ -154,7 +180,7 @@ class SparseNetwork(nn.Module):
|
||||
tensor = self.sparse_layer_forward(x, self.first_layer)
|
||||
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
||||
if nl_idx % 2 == 0 and self.residual_skip:
|
||||
residual = tensor.clone()
|
||||
residual = tensor
|
||||
# Sparse Layer pass
|
||||
tensor = self.sparse_layer_forward(tensor, network_layer)
|
||||
|
||||
@ -180,12 +206,18 @@ class SparseNetwork(nn.Module):
|
||||
|
||||
@property
|
||||
def particles(self):
|
||||
particles = []
|
||||
particles.extend(self.first_layer.particles)
|
||||
for layer in self.hidden_layers:
|
||||
particles.extend(layer.particles)
|
||||
particles.extend(self.last_layer.particles)
|
||||
return iter(particles)
|
||||
#particles = []
|
||||
#particles.extend(self.first_layer.particles)
|
||||
#for layer in self.hidden_layers:
|
||||
# particles.extend(layer.particles)
|
||||
#particles.extend(self.last_layer.particles)
|
||||
return (x for y in (self.first_layer.particles,
|
||||
*(l.particles for l in self.hidden_layers),
|
||||
self.last_layer.particles) for x in y)
|
||||
|
||||
@property
|
||||
def particle_weights(self):
|
||||
return (x for y in self.sparselayers for x in y.particle_weights)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
super(SparseNetwork, self).to(*args, **kwargs)
|
||||
@ -194,18 +226,26 @@ class SparseNetwork(nn.Module):
|
||||
self.hidden_layers = nn.ModuleList([hidden_layer.to(*args, **kwargs) for hidden_layer in self.hidden_layers])
|
||||
return self
|
||||
|
||||
@property
|
||||
def sparselayers(self):
|
||||
return (x for x in (self.first_layer, *self.hidden_layers, self.last_layer))
|
||||
|
||||
def combined_self_train(self):
|
||||
import time
|
||||
t = time.time()
|
||||
losses = []
|
||||
for layer in [self.first_layer, *self.hidden_layers, self.last_layer]:
|
||||
for layer in self.sparselayers:
|
||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||
output = layer(x)
|
||||
|
||||
losses.append(F.mse_loss(output, target_data))
|
||||
print('Time Taken:', time.time() - t)
|
||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||
|
||||
def replace_weights_by_particles(self, particles):
|
||||
particles = list(particles)
|
||||
for layer in self.sparselayers:
|
||||
layer.replace_weights_by_particles(particles[:layer.nr_nets])
|
||||
del particles[:layer.nr_nets]
|
||||
return self
|
||||
|
||||
|
||||
def test_sparse_net():
|
||||
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])
|
||||
|
Reference in New Issue
Block a user