apply networks are now loop free

This commit is contained in:
Steffen Illium
2022-02-21 18:11:30 +01:00
parent f25cee5203
commit 2a710b40d7
3 changed files with 121 additions and 65 deletions

View File

@ -22,7 +22,9 @@ class SparseLayer(nn.Module):
self.depth_dim = depth
self.hidden_dim = width
self.out_dim = out
self.dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
self.dummy_net_shapes = [list(x.shape) for x in dummy_net.parameters()]
self.dummy_net_weight_pos_enc = dummy_net._weight_pos_enc
self.sparse_sub_layer = list()
self.indices = list()
@ -37,18 +39,14 @@ class SparseLayer(nn.Module):
self.weights.append(weights)
def coo_sparse_layer(self, layer_id):
layer_shape = list(self.dummy_net.parameters())[layer_id].shape
layer_shape = self.dummy_net_shapes[layer_id]
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T)
values = torch.nn.Parameter(
torch.randn((self.nr_nets * (layer_shape[0]*layer_shape[1]))), requires_grad=True
)
values = torch.nn.Parameter(torch.randn((np.prod((*layer_shape, self.nr_nets)).item())), requires_grad=True)
return indices, values, sparse_diagonal.shape
def get_self_train_inputs_and_targets(self):
encoding_matrix, mask = self.dummy_net._weight_pos_enc
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2
# and first hidden*out weights of layer3 = first net
@ -57,6 +55,13 @@ class SparseLayer(nn.Module):
# [nr_net*[nr_weights]]
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
# (16, 25)
encoding_matrix, mask = self.dummy_net_weight_pos_enc
weight_device = weights_per_net[0].device
if weight_device != encoding_matrix.device or weight_device != mask.device:
encoding_matrix, mask = encoding_matrix.to(weight_device), mask.to(weight_device)
self.dummy_net_weight_pos_enc = encoding_matrix, mask
inputs = torch.hstack(
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
for i in range(self.nr_nets)]
@ -80,6 +85,24 @@ class SparseLayer(nn.Module):
particles.apply_weights(weights)
return self._particles
@property
def particle_weights(self):
all_weights = [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
weights_per_net = [torch.cat([layer[i] for layer in all_weights]).view(-1, 1) for i in
range(self.nr_nets)] # [nr_net*[nr_weights]]
return weights_per_net
def replace_weights_by_particles(self, particles):
assert len(particles) == self.nr_nets
# Particle Weight Update
all_weights = [list(particle.parameters()) for particle in particles]
all_weights = [torch.cat(x).view(-1) for x in zip(*all_weights)]
# [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
for widx, (weights, key) in enumerate(zip(all_weights, self.state_dict().keys())):
self.state_dict()[key] = weights[:]
return self
def __call__(self, x):
for indices, diag_shapes, weights in zip(self.indices, self.diag_shapes, self.weights):
s = torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
@ -119,9 +142,12 @@ def test_sparse_layer():
def embed_batch(x, repeat_dim):
# x of shape (batchsize, flat_img_dim)
x = x.unsqueeze(-1) #(batchsize, flat_img_dim, 1)
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim) #(batchsize, flat_img_dim, encoding_dim*repeat_dim)
# (batchsize, flat_img_dim, 1)
x = x.unsqueeze(-1)
# (batchsize, flat_img_dim, encoding_dim*repeat_dim)
# torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim)
def embed_vector(x, repeat_dim):
# x of shape [flat_img_dim]
@ -154,7 +180,7 @@ class SparseNetwork(nn.Module):
tensor = self.sparse_layer_forward(x, self.first_layer)
for nl_idx, network_layer in enumerate(self.hidden_layers):
if nl_idx % 2 == 0 and self.residual_skip:
residual = tensor.clone()
residual = tensor
# Sparse Layer pass
tensor = self.sparse_layer_forward(tensor, network_layer)
@ -180,12 +206,18 @@ class SparseNetwork(nn.Module):
@property
def particles(self):
particles = []
particles.extend(self.first_layer.particles)
for layer in self.hidden_layers:
particles.extend(layer.particles)
particles.extend(self.last_layer.particles)
return iter(particles)
#particles = []
#particles.extend(self.first_layer.particles)
#for layer in self.hidden_layers:
# particles.extend(layer.particles)
#particles.extend(self.last_layer.particles)
return (x for y in (self.first_layer.particles,
*(l.particles for l in self.hidden_layers),
self.last_layer.particles) for x in y)
@property
def particle_weights(self):
return (x for y in self.sparselayers for x in y.particle_weights)
def to(self, *args, **kwargs):
super(SparseNetwork, self).to(*args, **kwargs)
@ -194,18 +226,26 @@ class SparseNetwork(nn.Module):
self.hidden_layers = nn.ModuleList([hidden_layer.to(*args, **kwargs) for hidden_layer in self.hidden_layers])
return self
@property
def sparselayers(self):
return (x for x in (self.first_layer, *self.hidden_layers, self.last_layer))
def combined_self_train(self):
import time
t = time.time()
losses = []
for layer in [self.first_layer, *self.hidden_layers, self.last_layer]:
for layer in self.sparselayers:
x, target_data = layer.get_self_train_inputs_and_targets()
output = layer(x)
losses.append(F.mse_loss(output, target_data))
print('Time Taken:', time.time() - t)
return torch.hstack(losses).sum(dim=-1, keepdim=True)
def replace_weights_by_particles(self, particles):
particles = list(particles)
for layer in self.sparselayers:
layer.replace_weights_by_particles(particles[:layer.nr_nets])
del particles[:layer.nr_nets]
return self
def test_sparse_net():
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])