some work on the new journal experiments with cristions code
This commit is contained in:
51
network.py
51
network.py
@ -1,4 +1,4 @@
|
||||
from __future__ import annotations
|
||||
#from __future__ import annotations
|
||||
import copy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -33,7 +33,7 @@ class Net(nn.Module):
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def apply_weights(network: Net, new_weights: Tensor) -> Net:
|
||||
def apply_weights(network, new_weights: Tensor):
|
||||
""" Changing the weights of a network to new given values. """
|
||||
|
||||
i = 0
|
||||
@ -46,9 +46,12 @@ class Net(nn.Module):
|
||||
|
||||
return network
|
||||
|
||||
def __init__(self, i_size: int, h_size: int, o_size: int, name=None) -> None:
|
||||
super().__init__()
|
||||
|
||||
|
||||
|
||||
def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None:
|
||||
super().__init__()
|
||||
self.start_time = start_time
|
||||
self.name = name
|
||||
self.input_size = i_size
|
||||
self.hidden_size = h_size
|
||||
@ -61,6 +64,7 @@ class Net(nn.Module):
|
||||
self.s_application_weights_history = []
|
||||
self.loss_history = []
|
||||
self.trained = False
|
||||
self.number_trained = 0
|
||||
|
||||
self.is_fixpoint = ""
|
||||
|
||||
@ -75,15 +79,13 @@ class Net(nn.Module):
|
||||
|
||||
return x
|
||||
|
||||
def normalize(self, value):
|
||||
def normalize(self, value, norm):
|
||||
""" Normalizing the values >= 1 and adding pow(10, -8) to the values equal to 0 """
|
||||
|
||||
if value >= 1:
|
||||
return value/len(self.state_dict())
|
||||
elif value == 0:
|
||||
return pow(10, -8)
|
||||
if norm > 1:
|
||||
return float(value) / float(norm)
|
||||
else:
|
||||
return value
|
||||
return float(value)
|
||||
|
||||
def input_weight_matrix(self) -> Tensor:
|
||||
""" Calculating the input tensor formed from the weights of the net """
|
||||
@ -92,11 +94,13 @@ class Net(nn.Module):
|
||||
weight_matrix = np.arange(self.no_weights * 4).reshape(self.no_weights, 4).astype("f")
|
||||
|
||||
i = 0
|
||||
|
||||
max_layer_id = len(self.state_dict()) - 1
|
||||
for layer_id, layer_name in enumerate(self.state_dict()):
|
||||
max_cell_id = len(self.state_dict()[layer_name]) - 1
|
||||
for line_id, line_values in enumerate(self.state_dict()[layer_name]):
|
||||
max_weight_id = len(line_values) - 1
|
||||
for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]):
|
||||
weight_matrix[i] = weight_value.item(), self.normalize(layer_id), self.normalize(weight_id), self.normalize(line_id)
|
||||
weight_matrix[i] = weight_value.item(), self.normalize(layer_id, max_layer_id), self.normalize(line_id, max_cell_id), self.normalize(weight_id, max_weight_id)
|
||||
i += 1
|
||||
|
||||
return torch.from_numpy(weight_matrix)
|
||||
@ -108,9 +112,10 @@ class Net(nn.Module):
|
||||
self.trained = True
|
||||
|
||||
for training_step in range(training_steps):
|
||||
self.number_trained +=1
|
||||
optimizer.zero_grad()
|
||||
output = self(input_data)
|
||||
loss = F.mse_loss(output, target_data)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
@ -118,22 +123,22 @@ class Net(nn.Module):
|
||||
# If it is a soup/mixed env. save weights only at the end of all training steps (aka a soup/mixed epoch)
|
||||
if "soup" not in self.name and "mixed" not in self.name:
|
||||
# If self-training steps are lower than 10, then append weight history after each ST step.
|
||||
if training_steps < 10:
|
||||
self.s_train_weights_history.append(output.T.detach().numpy())
|
||||
self.loss_history.append(round(loss.detach().numpy().item(), 5))
|
||||
if self.number_trained < 10:
|
||||
self.s_train_weights_history.append(target_data.T.detach().numpy())
|
||||
self.loss_history.append(loss.detach().numpy().item())
|
||||
else:
|
||||
if training_step % log_step_size == 0:
|
||||
self.s_train_weights_history.append(output.T.detach().numpy())
|
||||
self.loss_history.append(round(loss.detach().numpy().item(), 5))
|
||||
if self.number_trained % log_step_size == 0:
|
||||
self.s_train_weights_history.append(target_data.T.detach().numpy())
|
||||
self.loss_history.append(loss.detach().numpy().item())
|
||||
|
||||
# Saving weights only at the end of a soup/mixed exp. epoch.
|
||||
if "soup" in self.name or "mixed" in self.name:
|
||||
self.s_train_weights_history.append(output.T.detach().numpy())
|
||||
self.loss_history.append(round(loss.detach().numpy().item(), 5))
|
||||
self.s_train_weights_history.append(target_data.T.detach().numpy())
|
||||
self.loss_history.append(loss.detach().numpy().item())
|
||||
|
||||
return output.detach().numpy(), loss, self.loss_history
|
||||
|
||||
def self_application(self, weights_matrix: Tensor, SA_steps: int, log_step_size: int) -> Net:
|
||||
def self_application(self, weights_matrix: Tensor, SA_steps: int, log_step_size: int) :
|
||||
""" Inputting the weights of a network to itself for a number of steps, without backpropagation. """
|
||||
|
||||
data = copy.deepcopy(weights_matrix)
|
||||
@ -162,7 +167,7 @@ class Net(nn.Module):
|
||||
|
||||
return new_net
|
||||
|
||||
def attack(self, other_net: Net) -> Net:
|
||||
def attack(self, other_net):
|
||||
other_net_weights = other_net.input_weight_matrix()
|
||||
SA_steps = 1
|
||||
log_step_size = 1
|
||||
|
Reference in New Issue
Block a user