some work on the new journal experiments with cristions code
This commit is contained in:
186
journal_basins.py
Normal file
186
journal_basins.py
Normal file
@@ -0,0 +1,186 @@
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import random
|
||||
import copy
|
||||
from functionalities_test import is_identity_function
|
||||
from network import Net
|
||||
from visualization import plot_3d_self_train, plot_loss
|
||||
import numpy as np
|
||||
|
||||
from sklearn.metrics import mean_absolute_error as MAE
|
||||
from sklearn.metrics import mean_squared_error as MSE
|
||||
|
||||
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
def l1 (tup):
|
||||
a, b = tup
|
||||
return abs(a-b)
|
||||
|
||||
def mean_invariate_manhattan_distance(X,Y):
|
||||
# One of these one-liners that might be smart or really dumb. Goal is to find pairwise
|
||||
# distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean.
|
||||
# Idea was to find weight sets that have same values but just in different positions, that would
|
||||
# make this distance 0.
|
||||
return np.mean(list(map(l1, zip(sorted(X),sorted(Y)))))
|
||||
|
||||
def distance_matrix(nets, distance="MIM", print_it=True):
|
||||
matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))]
|
||||
for net in range(len(nets)):
|
||||
weights = nets[net].input_weight_matrix()[:,0]
|
||||
for other_net in range(len(nets)):
|
||||
other_weights = nets[other_net].input_weight_matrix()[:,0]
|
||||
if distance in ["MSE"]:
|
||||
matrix[net][other_net] = MSE(weights, other_weights)
|
||||
elif distance in ["MAE"]:
|
||||
matrix[net][other_net] = MAE(weights, other_weights)
|
||||
elif distance in ["MIM"]:
|
||||
matrix[net][other_net] = mean_invariate_manhattan_distance(weights, other_weights)
|
||||
|
||||
if print_it:
|
||||
print(f"\nDistance matrix [{distance}]:")
|
||||
[print(row) for row in matrix]
|
||||
return matrix
|
||||
|
||||
class SpawnExperiment:
|
||||
|
||||
@staticmethod
|
||||
def apply_noise(network, noise: int):
|
||||
""" Changing the weights of a network to values + noise """
|
||||
|
||||
for layer_id, layer_name in enumerate(network.state_dict()):
|
||||
for line_id, line_values in enumerate(network.state_dict()[layer_name]):
|
||||
for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]):
|
||||
#network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
||||
if prng() < 0.5:
|
||||
network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
||||
else:
|
||||
network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise
|
||||
|
||||
return network
|
||||
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
epochs, ST_steps, noise, directory_name) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
self.net_learning_rate = net_learning_rate
|
||||
self.epochs = epochs
|
||||
self.ST_steps = ST_steps
|
||||
self.loss_history = []
|
||||
self.nets = []
|
||||
self.noise = noise or 10e-5
|
||||
print("\nNOISE:", self.noise)
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.populate_environment()
|
||||
self.spawn_and_continue()
|
||||
self.weights_evolution_3d_experiment()
|
||||
#self.visualize_loss()
|
||||
distance_matrix(self.nets)
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating experiment %s" % i)
|
||||
|
||||
net_name = f"ST_net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
|
||||
for _ in range(self.ST_steps):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
|
||||
#print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
||||
self.nets.append(net)
|
||||
|
||||
|
||||
def spawn_and_continue(self, number_spawns:int = 5):
|
||||
# For every initial net {i} after populating (that is fixpoint after first epoch);
|
||||
for i in range(self.population_size):
|
||||
net = self.nets[i]
|
||||
|
||||
net_input_data = net.input_weight_matrix()
|
||||
net_target_data = net.create_target_weights(net_input_data)
|
||||
if is_identity_function(net, net_input_data, net_target_data):
|
||||
print(f"\nNet {i} is fixpoint")
|
||||
#print("\nNet weights before training\n", target_data)
|
||||
|
||||
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
|
||||
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
||||
for j in range(number_spawns):
|
||||
clone = Net(net.input_size, net.hidden_size, net.out_size, f"ST_net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps)
|
||||
clone.load_state_dict(copy.deepcopy(net.state_dict()))
|
||||
rand_noise = prng() * self.noise
|
||||
clone = self.apply_noise(clone, rand_noise)
|
||||
|
||||
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps) and add to nets for plotting;
|
||||
for _ in range(self.epochs - 1):
|
||||
for _ in range(self.ST_steps):
|
||||
input_data = clone.input_weight_matrix()
|
||||
target_data = clone.create_target_weights(input_data)
|
||||
clone.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
#print(f"clone {j} last weights: {target_data}, noise {noise}")
|
||||
if is_identity_function(clone, input_data, target_data):
|
||||
print(f"Clone {j} (of net_{i}) is fixpoint. \nMSE(j,i): {MSE(net_target_data, target_data)}, \nMAE(j,i): {MAE(net_target_data, target_data)}\n")
|
||||
self.nets.append(clone)
|
||||
|
||||
# Finally take parent net {i} and finish it's training for comparison to clone development.
|
||||
for _ in range(self.epochs - 1):
|
||||
for _ in range(self.ST_steps):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
#print("\nNet weights after training \n", target_data)
|
||||
|
||||
else:
|
||||
print("No fixpoints found.")
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
|
||||
return plot_3d_self_train(self.nets, exp_name, self.directory_name, self.log_step_size)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
plot_loss(self.loss_history, self.directory_name)
|
||||
|
||||
if __name__=="__main__":
|
||||
|
||||
NET_INPUT_SIZE = 4
|
||||
NET_OUT_SIZE = 1
|
||||
|
||||
# Define number of runs & name:
|
||||
ST_runs = 1
|
||||
ST_runs_name = "test-27"
|
||||
ST_steps = 1500
|
||||
ST_epochs = 2
|
||||
ST_log_step_size = 10
|
||||
|
||||
# Define number of networks & their architecture
|
||||
ST_population_size = 1
|
||||
ST_net_hidden_size = 2
|
||||
ST_net_learning_rate = 0.04
|
||||
ST_name_hash = random.getrandbits(32)
|
||||
|
||||
print(f"Running the Spawn experiment:")
|
||||
for noise_factor in range(3, 6):
|
||||
SpawnExperiment(
|
||||
population_size=ST_population_size,
|
||||
log_step_size=ST_log_step_size,
|
||||
net_input_size=NET_INPUT_SIZE,
|
||||
net_hidden_size=ST_net_hidden_size,
|
||||
net_out_size=NET_OUT_SIZE,
|
||||
net_learning_rate=ST_net_learning_rate,
|
||||
epochs=ST_epochs,
|
||||
ST_steps=ST_steps,
|
||||
noise=pow(10,-noise_factor),
|
||||
directory_name=f"./experiments/spawn_basin/{ST_name_hash}_10e-{noise_factor}"
|
||||
)
|
||||
Reference in New Issue
Block a user