Things
This commit is contained in:
@ -13,9 +13,8 @@ class Experiment:
|
||||
return dill.load(dill_file)
|
||||
|
||||
def __init__(self, name=None, ident=None):
|
||||
self.experiment_id = ident or time.time()
|
||||
self.experiment_id = '{}_{}'.format(ident or '', time.time().as_integer_ratio()[0])
|
||||
self.experiment_name = name or 'unnamed_experiment'
|
||||
self.base_dir = self.experiment_name
|
||||
self.next_iteration = 0
|
||||
self.log_messages = []
|
||||
self.historical_particles = {}
|
||||
@ -62,8 +61,8 @@ class Experiment:
|
||||
|
||||
class FixpointExperiment(Experiment):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(name=self.__class__.__name__)
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(name=self.__class__.__name__, **kwargs)
|
||||
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||
self.interesting_fixpoints = []
|
||||
|
||||
@ -73,7 +72,7 @@ class FixpointExperiment(Experiment):
|
||||
net.self_attack()
|
||||
i += 1
|
||||
if run_id:
|
||||
net.save_state(time=run_id)
|
||||
net.save_state(time=i)
|
||||
self.count(net)
|
||||
|
||||
def count(self, net):
|
||||
@ -94,9 +93,6 @@ class FixpointExperiment(Experiment):
|
||||
class MixedFixpointExperiment(FixpointExperiment):
|
||||
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0):
|
||||
# TODO Where to place the trajectory storage ?
|
||||
# weights = net.get_weights()
|
||||
# self.add_trajectory_segment(run_id, weights)
|
||||
|
||||
i = 0
|
||||
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
||||
@ -107,6 +103,8 @@ class MixedFixpointExperiment(FixpointExperiment):
|
||||
bar.postfix[1]["value"] = loss
|
||||
bar.update()
|
||||
i += 1
|
||||
if run_id:
|
||||
net.save_state()
|
||||
self.count(net)
|
||||
|
||||
|
||||
@ -115,4 +113,7 @@ class SoupExperiment(Experiment):
|
||||
|
||||
|
||||
class IdentLearningExperiment(Experiment):
|
||||
|
||||
def __init__(self):
|
||||
super(IdentLearningExperiment, self).__init__(name=self.__class__.__name__)
|
||||
pass
|
||||
|
175
code/network.py
175
code/network.py
@ -162,11 +162,27 @@ class NeuralNetwork(PrintingObject):
|
||||
def print_weights(self, weights=None):
|
||||
print(self.repr_weights(weights))
|
||||
|
||||
|
||||
class ParticleDecorator:
|
||||
next_uid = 0
|
||||
|
||||
def __init__(self, net):
|
||||
self.uid = self.next_uid
|
||||
self.next_uid += 1
|
||||
self.net = net
|
||||
self.states = []
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self.net, name)
|
||||
|
||||
def get_uid(self):
|
||||
return self.uid
|
||||
|
||||
def make_state(self, **kwargs):
|
||||
weights = self.get_weights_flat()
|
||||
state = {'class': self.__class__.__name__, 'weights': weights}
|
||||
if any(np.isnan(weights)) or any(np.isinf(weights)):
|
||||
weights = self.net.get_weights_flat()
|
||||
if any(np.isinf(weights)):
|
||||
return None
|
||||
state = {'class': self.net.__class__.__name__, 'weights': weights}
|
||||
state.update(kwargs)
|
||||
return state
|
||||
|
||||
@ -176,6 +192,16 @@ class NeuralNetwork(PrintingObject):
|
||||
self.states += [state]
|
||||
else:
|
||||
pass
|
||||
|
||||
def update_state(self, number, **kwargs):
|
||||
raise NotImplementedError('Result is vague')
|
||||
if number < len(self.states):
|
||||
self.states[number] = self.make_state(**kwargs)
|
||||
else:
|
||||
for i in range(len(self.states), number):
|
||||
self.states += [None]
|
||||
self.states += self.make_state(**kwargs)
|
||||
|
||||
def get_states(self):
|
||||
return self.states
|
||||
|
||||
@ -250,7 +276,7 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
|
||||
def compute_samples(self):
|
||||
samples = []
|
||||
for normal_weight_point in self.__class__.compute_all_normal_weight_points(self.get_weights()):
|
||||
for normal_weight_point in self.compute_all_normal_weight_points(self.get_weights()):
|
||||
weight, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
||||
|
||||
sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]]))
|
||||
@ -374,7 +400,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
|
||||
def get_collected_weights(self):
|
||||
collection_size = self.get_amount_of_weights() // self.aggregates
|
||||
return self.__class__.collect_weights(self.get_weights(), collection_size)
|
||||
return self.collect_weights(self.get_weights(), collection_size)
|
||||
|
||||
def get_aggregated_weights(self):
|
||||
collections, leftovers = self.get_collected_weights()
|
||||
@ -463,7 +489,7 @@ class FFTNeuralNetwork(NeuralNetwork):
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
# build aggregations from old_weights
|
||||
weights = self.get_weights()
|
||||
weights = self.get_weights_flat()
|
||||
|
||||
# call network
|
||||
old_aggregation = self.aggregate_fft(weights, self.aggregates)
|
||||
@ -544,59 +570,6 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
return sample, sample
|
||||
|
||||
|
||||
class LearningNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@staticmethod
|
||||
def mean_reduction(weights, features):
|
||||
single_dim_weights = np.hstack([w.flatten() for w in weights])
|
||||
shaped_weights = np.reshape(single_dim_weights, (1, features, -1))
|
||||
x = np.mean(shaped_weights, axis=-1)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def fft_reduction(weights, features):
|
||||
single_dim_weights = np.hstack([w.flatten() for w in weights])
|
||||
x = np.fft.fft(single_dim_weights, n=features)[None, ...]
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def random_reduction(_, features):
|
||||
x = np.random.rand(features)[None, ...]
|
||||
return x
|
||||
|
||||
def __init__(self, width, depth, features, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.features = features
|
||||
self.compile_params = dict(loss='mse', optimizer='sgd')
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(units=self.width, input_dim=self.features, **self.keras_params))
|
||||
for _ in range(self.depth-1):
|
||||
self.model.add(Dense(units=self.width, **self.keras_params))
|
||||
self.model.add(Dense(units=self.features, **self.keras_params))
|
||||
self.model.compile(**self.compile_params)
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def with_compile_params(self, **kwargs):
|
||||
self.compile_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def learn(self, epochs, reduction, batchsize=1):
|
||||
with tqdm(total=epochs, ascii=True,
|
||||
desc='Type: {t} @ Epoch:'.format(t=self.__class__.__name__),
|
||||
postfix=["Loss", dict(value=0)]) as bar:
|
||||
for epoch in range(epochs):
|
||||
old_weights = self.get_weights()
|
||||
x = reduction(old_weights, self.features)
|
||||
savestateCallback = SaveStateCallback(self, epoch=epoch)
|
||||
history = self.model.fit(x=x, y=x, verbose=0, batch_size=batchsize, callbacks=savestateCallback)
|
||||
bar.postfix[1]["value"] = history.history['loss'][-1]
|
||||
bar.update()
|
||||
|
||||
|
||||
class TrainingNeuralNetworkDecorator():
|
||||
|
||||
def __init__(self, net, **kwargs):
|
||||
@ -637,7 +610,7 @@ class TrainingNeuralNetworkDecorator():
|
||||
self.compiled()
|
||||
x, y = self.net.compute_samples()
|
||||
savestatecallback = SaveStateCallback(net=self.net, epoch=epoch) if store_states else None
|
||||
history = self.net.model.fit(x=x, y=y, verbose=0, batch_size=batchsize, callbacks=[savestatecallback])
|
||||
history = self.net.model.fit(x=x, y=y, verbose=0, batch_size=batchsize, callbacks=[savestatecallback], initial_epoch=epoch)
|
||||
return history.history['loss'][-1]
|
||||
|
||||
def train_other(self, other_network, batchsize=1):
|
||||
@ -650,52 +623,56 @@ class TrainingNeuralNetworkDecorator():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if False:
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
||||
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)\
|
||||
net = FFTNeuralNetwork(aggregates=4, width=2, depth=2) \
|
||||
.with_params(print_all_weight_updates=False, use_bias=False)
|
||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')\
|
||||
# .with_params(print_all_weight_updates=True)
|
||||
# net.print_weights()
|
||||
|
||||
def run_exp(net, prints=False):
|
||||
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
|
||||
exp.run_net(net, 100, run_id=run_id + 1)
|
||||
exp.historical_particles[run_id] = net
|
||||
exp.log(exp.counters)
|
||||
if False:
|
||||
# TODO SI: Ich muss noch apply to weights implementieren
|
||||
# is_fixpoint was wrong because it trivially returned the old weights
|
||||
with IdentLearningExperiment() as exp:
|
||||
net = LearningNeuralNetwork(width=2, depth=2, features=2, )\
|
||||
.with_keras_params(activation='sigmoid', use_bias=False, ) \
|
||||
.with_params(print_all_weight_updates=False)
|
||||
net.print_weights()
|
||||
time.sleep(0.1)
|
||||
print(net.is_fixpoint(epsilon=0.1e-6))
|
||||
net.learn(1, reduction=LearningNeuralNetwork.fft_reduction)
|
||||
print(net.is_fixpoint(epsilon=0.1e-6))
|
||||
|
||||
if False:
|
||||
# ok so this works quite realiably
|
||||
with FixpointExperiment() as exp:
|
||||
for i in range(1):
|
||||
|
||||
run_count = 1000
|
||||
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2))\
|
||||
.with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train(epoch=run_id)
|
||||
if run_id % 100 == 0:
|
||||
net.print_weights()
|
||||
if prints:
|
||||
# print(net.apply_to_network(net))
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
print("Loss " + str(loss))
|
||||
print()
|
||||
exp.historical_particles[i] = net
|
||||
K.clear_session()
|
||||
|
||||
if False:
|
||||
# WeightWise Neural Network
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
net = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2) \
|
||||
.with_keras_params(activation='linear'))
|
||||
run_exp(net)
|
||||
exp.log(exp.counters)
|
||||
|
||||
if False:
|
||||
# Aggregating Neural Network
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
net = ParticleDecorator(AggregatingNeuralNetwork(aggregates=4, width=2, depth=2) \
|
||||
.with_keras_params())
|
||||
run_exp(net)
|
||||
exp.log(exp.counters)
|
||||
|
||||
if False:
|
||||
#FFT Neural Network
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
net = ParticleDecorator(FFTNeuralNetwork(aggregates=4, width=2, depth=2) \
|
||||
.with_keras_params(activation='linear'))
|
||||
run_exp(net)
|
||||
exp.log(exp.counters)
|
||||
|
||||
if True:
|
||||
# ok so this works quite realiably
|
||||
with FixpointExperiment() as exp:
|
||||
for i in range(1):
|
||||
run_count = 1000
|
||||
net = ParticleDecorator(TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2)))
|
||||
net.with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
net.compiled()
|
||||
loss = net.train(epoch=run_id)
|
||||
if run_id % 100 == 0:
|
||||
run_exp(net)
|
||||
|
||||
if False:
|
||||
# this does not work as the aggregation function screws over the fixpoint computation....
|
||||
# TODO: check for fixpoint in aggregated space...
|
||||
|
46
code/soup.py
46
code/soup.py
@ -7,7 +7,7 @@ def prng():
|
||||
return random.random()
|
||||
|
||||
|
||||
class Soup:
|
||||
class Soup(object):
|
||||
|
||||
def __init__(self, size, generator, **kwargs):
|
||||
self.size = size
|
||||
@ -105,50 +105,6 @@ class Soup:
|
||||
print(particle.is_fixpoint())
|
||||
|
||||
|
||||
class ParticleDecorator:
|
||||
|
||||
next_uid = 0
|
||||
|
||||
def __init__(self, net):
|
||||
self.uid = self.__class__.next_uid
|
||||
self.__class__.next_uid += 1
|
||||
self.net = net
|
||||
self.states = []
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self.net, name)
|
||||
|
||||
def get_uid(self):
|
||||
return self.uid
|
||||
|
||||
def make_state(self, **kwargs):
|
||||
weights = self.net.get_weights_flat()
|
||||
if any(np.isinf(weights)):
|
||||
return None
|
||||
state = {'class': self.net.__class__.__name__, 'weights': weights}
|
||||
state.update(kwargs)
|
||||
return state
|
||||
|
||||
def save_state(self, **kwargs):
|
||||
state = self.make_state(**kwargs)
|
||||
if state is not None:
|
||||
self.states += [state]
|
||||
else:
|
||||
pass
|
||||
|
||||
def update_state(self, number, **kwargs):
|
||||
raise NotImplementedError('Result is vague')
|
||||
if number < len(self.states):
|
||||
self.states[number] = self.make_state(**kwargs)
|
||||
else:
|
||||
for i in range(len(self.states), number):
|
||||
self.states += [None]
|
||||
self.states += self.make_state(**kwargs)
|
||||
|
||||
def get_states(self):
|
||||
return self.states
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if True:
|
||||
with SoupExperiment() as exp:
|
||||
|
78
code/test.py
78
code/test.py
@ -3,6 +3,84 @@ from network import *
|
||||
from soup import *
|
||||
import numpy as np
|
||||
|
||||
|
||||
class LearningNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@staticmethod
|
||||
def mean_reduction(weights, features):
|
||||
single_dim_weights = np.hstack([w.flatten() for w in weights])
|
||||
shaped_weights = np.reshape(single_dim_weights, (1, features, -1))
|
||||
x = np.mean(shaped_weights, axis=-1)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def fft_reduction(weights, features):
|
||||
single_dim_weights = np.hstack([w.flatten() for w in weights])
|
||||
x = np.fft.fft(single_dim_weights, n=features)[None, ...]
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def random_reduction(_, features):
|
||||
x = np.random.rand(features)[None, ...]
|
||||
return x
|
||||
|
||||
def __init__(self, width, depth, features, **kwargs):
|
||||
raise DeprecationWarning
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.features = features
|
||||
self.compile_params = dict(loss='mse', optimizer='sgd')
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(units=self.width, input_dim=self.features, **self.keras_params))
|
||||
for _ in range(self.depth - 1):
|
||||
self.model.add(Dense(units=self.width, **self.keras_params))
|
||||
self.model.add(Dense(units=self.features, **self.keras_params))
|
||||
self.model.compile(**self.compile_params)
|
||||
|
||||
def apply_to_weights(self, old_weights, **kwargs):
|
||||
reduced = kwargs.get('reduction', self.fft_reduction)()
|
||||
raise NotImplementedError
|
||||
# build aggregations from old_weights
|
||||
weights = self.get_weights_flat()
|
||||
|
||||
# call network
|
||||
old_aggregation = self.aggregate_fft(weights, self.aggregates)
|
||||
new_aggregation = self.apply(old_aggregation)
|
||||
|
||||
# generate list of new weights
|
||||
new_weights_list = self.deaggregate_identically(new_aggregation, self.get_amount_of_weights())
|
||||
|
||||
new_weights_list = self.get_shuffler()(new_weights_list)
|
||||
|
||||
# write back new weights
|
||||
new_weights = self.fill_weights(old_weights, new_weights_list)
|
||||
|
||||
# return results
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
print("updated old weight aggregations " + str(old_aggregation))
|
||||
print("to new weight aggregations " + str(new_aggregation))
|
||||
print("resulting in network weights ...")
|
||||
print(self.__class__.weights_to_string(new_weights))
|
||||
return new_weights
|
||||
|
||||
def with_compile_params(self, **kwargs):
|
||||
self.compile_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def learn(self, epochs, reduction, batchsize=1):
|
||||
with tqdm(total=epochs, ascii=True,
|
||||
desc='Type: {t} @ Epoch:'.format(t=self.__class__.__name__),
|
||||
postfix=["Loss", dict(value=0)]) as bar:
|
||||
for epoch in range(epochs):
|
||||
old_weights = self.get_weights()
|
||||
x = reduction(old_weights, self.features)
|
||||
savestateCallback = SaveStateCallback(self, epoch=epoch)
|
||||
history = self.model.fit(x=x, y=x, verbose=0, batch_size=batchsize, callbacks=savestateCallback)
|
||||
bar.postfix[1]["value"] = history.history['loss'][-1]
|
||||
bar.update()
|
||||
|
||||
|
||||
def vary(e=0.0, f=0.0):
|
||||
return [
|
||||
np.array([[1.0+e, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f]], dtype=np.float32),
|
||||
|
Reference in New Issue
Block a user