This commit is contained in:
Si11ium
2019-03-11 16:12:10 +01:00
parent 7a76b1ba88
commit 1f76c06c01
4 changed files with 159 additions and 147 deletions

View File

@ -13,9 +13,8 @@ class Experiment:
return dill.load(dill_file) return dill.load(dill_file)
def __init__(self, name=None, ident=None): def __init__(self, name=None, ident=None):
self.experiment_id = ident or time.time() self.experiment_id = '{}_{}'.format(ident or '', time.time().as_integer_ratio()[0])
self.experiment_name = name or 'unnamed_experiment' self.experiment_name = name or 'unnamed_experiment'
self.base_dir = self.experiment_name
self.next_iteration = 0 self.next_iteration = 0
self.log_messages = [] self.log_messages = []
self.historical_particles = {} self.historical_particles = {}
@ -62,8 +61,8 @@ class Experiment:
class FixpointExperiment(Experiment): class FixpointExperiment(Experiment):
def __init__(self): def __init__(self, **kwargs):
super().__init__(name=self.__class__.__name__) super().__init__(name=self.__class__.__name__, **kwargs)
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0) self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = [] self.interesting_fixpoints = []
@ -73,7 +72,7 @@ class FixpointExperiment(Experiment):
net.self_attack() net.self_attack()
i += 1 i += 1
if run_id: if run_id:
net.save_state(time=run_id) net.save_state(time=i)
self.count(net) self.count(net)
def count(self, net): def count(self, net):
@ -94,9 +93,6 @@ class FixpointExperiment(Experiment):
class MixedFixpointExperiment(FixpointExperiment): class MixedFixpointExperiment(FixpointExperiment):
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0): def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0):
# TODO Where to place the trajectory storage ?
# weights = net.get_weights()
# self.add_trajectory_segment(run_id, weights)
i = 0 i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint(): while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
@ -107,6 +103,8 @@ class MixedFixpointExperiment(FixpointExperiment):
bar.postfix[1]["value"] = loss bar.postfix[1]["value"] = loss
bar.update() bar.update()
i += 1 i += 1
if run_id:
net.save_state()
self.count(net) self.count(net)
@ -115,4 +113,7 @@ class SoupExperiment(Experiment):
class IdentLearningExperiment(Experiment): class IdentLearningExperiment(Experiment):
def __init__(self):
super(IdentLearningExperiment, self).__init__(name=self.__class__.__name__)
pass pass

View File

@ -162,11 +162,27 @@ class NeuralNetwork(PrintingObject):
def print_weights(self, weights=None): def print_weights(self, weights=None):
print(self.repr_weights(weights)) print(self.repr_weights(weights))
class ParticleDecorator:
next_uid = 0
def __init__(self, net):
self.uid = self.next_uid
self.next_uid += 1
self.net = net
self.states = []
def __getattr__(self, name):
return getattr(self.net, name)
def get_uid(self):
return self.uid
def make_state(self, **kwargs): def make_state(self, **kwargs):
weights = self.get_weights_flat() weights = self.net.get_weights_flat()
state = {'class': self.__class__.__name__, 'weights': weights} if any(np.isinf(weights)):
if any(np.isnan(weights)) or any(np.isinf(weights)):
return None return None
state = {'class': self.net.__class__.__name__, 'weights': weights}
state.update(kwargs) state.update(kwargs)
return state return state
@ -176,6 +192,16 @@ class NeuralNetwork(PrintingObject):
self.states += [state] self.states += [state]
else: else:
pass pass
def update_state(self, number, **kwargs):
raise NotImplementedError('Result is vague')
if number < len(self.states):
self.states[number] = self.make_state(**kwargs)
else:
for i in range(len(self.states), number):
self.states += [None]
self.states += self.make_state(**kwargs)
def get_states(self): def get_states(self):
return self.states return self.states
@ -250,7 +276,7 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
def compute_samples(self): def compute_samples(self):
samples = [] samples = []
for normal_weight_point in self.__class__.compute_all_normal_weight_points(self.get_weights()): for normal_weight_point in self.compute_all_normal_weight_points(self.get_weights()):
weight, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point weight, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]])) sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]]))
@ -374,7 +400,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
def get_collected_weights(self): def get_collected_weights(self):
collection_size = self.get_amount_of_weights() // self.aggregates collection_size = self.get_amount_of_weights() // self.aggregates
return self.__class__.collect_weights(self.get_weights(), collection_size) return self.collect_weights(self.get_weights(), collection_size)
def get_aggregated_weights(self): def get_aggregated_weights(self):
collections, leftovers = self.get_collected_weights() collections, leftovers = self.get_collected_weights()
@ -463,7 +489,7 @@ class FFTNeuralNetwork(NeuralNetwork):
def apply_to_weights(self, old_weights): def apply_to_weights(self, old_weights):
# build aggregations from old_weights # build aggregations from old_weights
weights = self.get_weights() weights = self.get_weights_flat()
# call network # call network
old_aggregation = self.aggregate_fft(weights, self.aggregates) old_aggregation = self.aggregate_fft(weights, self.aggregates)
@ -544,59 +570,6 @@ class RecurrentNeuralNetwork(NeuralNetwork):
return sample, sample return sample, sample
class LearningNeuralNetwork(NeuralNetwork):
@staticmethod
def mean_reduction(weights, features):
single_dim_weights = np.hstack([w.flatten() for w in weights])
shaped_weights = np.reshape(single_dim_weights, (1, features, -1))
x = np.mean(shaped_weights, axis=-1)
return x
@staticmethod
def fft_reduction(weights, features):
single_dim_weights = np.hstack([w.flatten() for w in weights])
x = np.fft.fft(single_dim_weights, n=features)[None, ...]
return x
@staticmethod
def random_reduction(_, features):
x = np.random.rand(features)[None, ...]
return x
def __init__(self, width, depth, features, **kwargs):
super().__init__(**kwargs)
self.width = width
self.depth = depth
self.features = features
self.compile_params = dict(loss='mse', optimizer='sgd')
self.model = Sequential()
self.model.add(Dense(units=self.width, input_dim=self.features, **self.keras_params))
for _ in range(self.depth-1):
self.model.add(Dense(units=self.width, **self.keras_params))
self.model.add(Dense(units=self.features, **self.keras_params))
self.model.compile(**self.compile_params)
def apply_to_weights(self, old_weights):
raise NotImplementedError
def with_compile_params(self, **kwargs):
self.compile_params.update(kwargs)
return self
def learn(self, epochs, reduction, batchsize=1):
with tqdm(total=epochs, ascii=True,
desc='Type: {t} @ Epoch:'.format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for epoch in range(epochs):
old_weights = self.get_weights()
x = reduction(old_weights, self.features)
savestateCallback = SaveStateCallback(self, epoch=epoch)
history = self.model.fit(x=x, y=x, verbose=0, batch_size=batchsize, callbacks=savestateCallback)
bar.postfix[1]["value"] = history.history['loss'][-1]
bar.update()
class TrainingNeuralNetworkDecorator(): class TrainingNeuralNetworkDecorator():
def __init__(self, net, **kwargs): def __init__(self, net, **kwargs):
@ -637,7 +610,7 @@ class TrainingNeuralNetworkDecorator():
self.compiled() self.compiled()
x, y = self.net.compute_samples() x, y = self.net.compute_samples()
savestatecallback = SaveStateCallback(net=self.net, epoch=epoch) if store_states else None savestatecallback = SaveStateCallback(net=self.net, epoch=epoch) if store_states else None
history = self.net.model.fit(x=x, y=y, verbose=0, batch_size=batchsize, callbacks=[savestatecallback]) history = self.net.model.fit(x=x, y=y, verbose=0, batch_size=batchsize, callbacks=[savestatecallback], initial_epoch=epoch)
return history.history['loss'][-1] return history.history['loss'][-1]
def train_other(self, other_network, batchsize=1): def train_other(self, other_network, batchsize=1):
@ -650,52 +623,56 @@ class TrainingNeuralNetworkDecorator():
if __name__ == '__main__': if __name__ == '__main__':
def run_exp(net, prints=False):
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
exp.run_net(net, 100, run_id=run_id + 1)
exp.historical_particles[run_id] = net
if prints:
# print(net.apply_to_network(net))
print("Fixpoint? " + str(net.is_fixpoint()))
print("Loss " + str(loss))
K.clear_session()
if False: if False:
# WeightWise Neural Network
with FixpointExperiment() as exp: with FixpointExperiment() as exp:
for run_id in tqdm(range(100)): for run_id in tqdm(range(100)):
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear') net = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2) \
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)\ .with_keras_params(activation='linear'))
net = FFTNeuralNetwork(aggregates=4, width=2, depth=2) \ run_exp(net)
.with_params(print_all_weight_updates=False, use_bias=False)
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')\
# .with_params(print_all_weight_updates=True)
# net.print_weights()
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
exp.run_net(net, 100, run_id=run_id+1)
exp.historical_particles[run_id] = net
exp.log(exp.counters) exp.log(exp.counters)
if False:
# TODO SI: Ich muss noch apply to weights implementieren
# is_fixpoint was wrong because it trivially returned the old weights
with IdentLearningExperiment() as exp:
net = LearningNeuralNetwork(width=2, depth=2, features=2, )\
.with_keras_params(activation='sigmoid', use_bias=False, ) \
.with_params(print_all_weight_updates=False)
net.print_weights()
time.sleep(0.1)
print(net.is_fixpoint(epsilon=0.1e-6))
net.learn(1, reduction=LearningNeuralNetwork.fft_reduction)
print(net.is_fixpoint(epsilon=0.1e-6))
if False: if False:
# Aggregating Neural Network
with FixpointExperiment() as exp:
for run_id in tqdm(range(100)):
net = ParticleDecorator(AggregatingNeuralNetwork(aggregates=4, width=2, depth=2) \
.with_keras_params())
run_exp(net)
exp.log(exp.counters)
if False:
#FFT Neural Network
with FixpointExperiment() as exp:
for run_id in tqdm(range(100)):
net = ParticleDecorator(FFTNeuralNetwork(aggregates=4, width=2, depth=2) \
.with_keras_params(activation='linear'))
run_exp(net)
exp.log(exp.counters)
if True:
# ok so this works quite realiably # ok so this works quite realiably
with FixpointExperiment() as exp: with FixpointExperiment() as exp:
for i in range(1): for i in range(1):
run_count = 1000 run_count = 1000
net = TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2))\ net = ParticleDecorator(TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(width=2, depth=2)))
.with_params(epsilon=0.0001).with_keras_params(optimizer='sgd') net.with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
for run_id in tqdm(range(run_count+1)): for run_id in tqdm(range(run_count+1)):
loss = net.compiled().train(epoch=run_id) net.compiled()
loss = net.train(epoch=run_id)
if run_id % 100 == 0: if run_id % 100 == 0:
net.print_weights() run_exp(net)
# print(net.apply_to_network(net))
print("Fixpoint? " + str(net.is_fixpoint()))
print("Loss " + str(loss))
print()
exp.historical_particles[i] = net
K.clear_session()
if False: if False:
# this does not work as the aggregation function screws over the fixpoint computation.... # this does not work as the aggregation function screws over the fixpoint computation....
# TODO: check for fixpoint in aggregated space... # TODO: check for fixpoint in aggregated space...

View File

@ -7,7 +7,7 @@ def prng():
return random.random() return random.random()
class Soup: class Soup(object):
def __init__(self, size, generator, **kwargs): def __init__(self, size, generator, **kwargs):
self.size = size self.size = size
@ -105,50 +105,6 @@ class Soup:
print(particle.is_fixpoint()) print(particle.is_fixpoint())
class ParticleDecorator:
next_uid = 0
def __init__(self, net):
self.uid = self.__class__.next_uid
self.__class__.next_uid += 1
self.net = net
self.states = []
def __getattr__(self, name):
return getattr(self.net, name)
def get_uid(self):
return self.uid
def make_state(self, **kwargs):
weights = self.net.get_weights_flat()
if any(np.isinf(weights)):
return None
state = {'class': self.net.__class__.__name__, 'weights': weights}
state.update(kwargs)
return state
def save_state(self, **kwargs):
state = self.make_state(**kwargs)
if state is not None:
self.states += [state]
else:
pass
def update_state(self, number, **kwargs):
raise NotImplementedError('Result is vague')
if number < len(self.states):
self.states[number] = self.make_state(**kwargs)
else:
for i in range(len(self.states), number):
self.states += [None]
self.states += self.make_state(**kwargs)
def get_states(self):
return self.states
if __name__ == '__main__': if __name__ == '__main__':
if True: if True:
with SoupExperiment() as exp: with SoupExperiment() as exp:

View File

@ -3,6 +3,84 @@ from network import *
from soup import * from soup import *
import numpy as np import numpy as np
class LearningNeuralNetwork(NeuralNetwork):
@staticmethod
def mean_reduction(weights, features):
single_dim_weights = np.hstack([w.flatten() for w in weights])
shaped_weights = np.reshape(single_dim_weights, (1, features, -1))
x = np.mean(shaped_weights, axis=-1)
return x
@staticmethod
def fft_reduction(weights, features):
single_dim_weights = np.hstack([w.flatten() for w in weights])
x = np.fft.fft(single_dim_weights, n=features)[None, ...]
return x
@staticmethod
def random_reduction(_, features):
x = np.random.rand(features)[None, ...]
return x
def __init__(self, width, depth, features, **kwargs):
raise DeprecationWarning
super().__init__(**kwargs)
self.width = width
self.depth = depth
self.features = features
self.compile_params = dict(loss='mse', optimizer='sgd')
self.model = Sequential()
self.model.add(Dense(units=self.width, input_dim=self.features, **self.keras_params))
for _ in range(self.depth - 1):
self.model.add(Dense(units=self.width, **self.keras_params))
self.model.add(Dense(units=self.features, **self.keras_params))
self.model.compile(**self.compile_params)
def apply_to_weights(self, old_weights, **kwargs):
reduced = kwargs.get('reduction', self.fft_reduction)()
raise NotImplementedError
# build aggregations from old_weights
weights = self.get_weights_flat()
# call network
old_aggregation = self.aggregate_fft(weights, self.aggregates)
new_aggregation = self.apply(old_aggregation)
# generate list of new weights
new_weights_list = self.deaggregate_identically(new_aggregation, self.get_amount_of_weights())
new_weights_list = self.get_shuffler()(new_weights_list)
# write back new weights
new_weights = self.fill_weights(old_weights, new_weights_list)
# return results
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
print("updated old weight aggregations " + str(old_aggregation))
print("to new weight aggregations " + str(new_aggregation))
print("resulting in network weights ...")
print(self.__class__.weights_to_string(new_weights))
return new_weights
def with_compile_params(self, **kwargs):
self.compile_params.update(kwargs)
return self
def learn(self, epochs, reduction, batchsize=1):
with tqdm(total=epochs, ascii=True,
desc='Type: {t} @ Epoch:'.format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for epoch in range(epochs):
old_weights = self.get_weights()
x = reduction(old_weights, self.features)
savestateCallback = SaveStateCallback(self, epoch=epoch)
history = self.model.fit(x=x, y=x, verbose=0, batch_size=batchsize, callbacks=savestateCallback)
bar.postfix[1]["value"] = history.history['loss'][-1]
bar.update()
def vary(e=0.0, f=0.0): def vary(e=0.0, f=0.0):
return [ return [
np.array([[1.0+e, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f]], dtype=np.float32), np.array([[1.0+e, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f]], dtype=np.float32),