MetaNetworks Debugged II
This commit is contained in:
parent
246d825bb4
commit
1b7581e656
@ -3,3 +3,4 @@ from .robustness_exp import run_robustness_experiment
|
||||
from .self_application_exp import run_SA_experiment
|
||||
from .self_train_exp import run_ST_experiment
|
||||
from .soup_exp import run_soup_experiment
|
||||
import functionalities_test
|
@ -6,8 +6,16 @@ import platform
|
||||
|
||||
import pandas as pd
|
||||
import torchmetrics
|
||||
|
||||
from functionalities_test import test_for_fixpoints
|
||||
import numpy as np
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
import seaborn as sns
|
||||
from torch import nn
|
||||
from torch.nn import Flatten
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
from tqdm import tqdm
|
||||
|
||||
if platform.node() == 'CarbonX':
|
||||
debug = True
|
||||
@ -28,23 +36,12 @@ else:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
import seaborn as sns
|
||||
from torch import nn
|
||||
from torch.nn import Flatten
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torchvision.datasets import MNIST
|
||||
from torchvision.transforms import ToTensor, Compose, Resize
|
||||
from tqdm import tqdm
|
||||
|
||||
from network import MetaNet
|
||||
from functionalities_test import test_for_fixpoints
|
||||
|
||||
WORKER = 10 if not debug else 2
|
||||
BATCHSIZE = 500 if not debug else 50
|
||||
EPOCH = 50 if not debug else 3
|
||||
EPOCH = 100 if not debug else 3
|
||||
VALIDATION_FRQ = 5 if not debug else 1
|
||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
@ -78,7 +75,7 @@ def set_checkpoint(model, out_path, epoch_n, final_model=False):
|
||||
if not final_model:
|
||||
ckpt_path = Path(out_path) / 'ckpt' / f'{epoch_n.zfill(4)}_model_ckpt.tp'
|
||||
else:
|
||||
ckpt_path = Path(out_path) / f'trained_model_ckpt.tp'
|
||||
ckpt_path = Path(out_path) / f'trained_model_ckpt_e{epoch_n}.tp'
|
||||
ckpt_path.parent.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
torch.save(model, ckpt_path, pickle_protocol=pickle.HIGHEST_PROTOCOL)
|
||||
@ -91,15 +88,16 @@ def validate(checkpoint_path, ratio=0.1):
|
||||
|
||||
# initialize metric
|
||||
validmetric = torchmetrics.Accuracy()
|
||||
ut = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||
|
||||
try:
|
||||
datas = MNIST(str(data_path), transform=utility_transforms, train=False)
|
||||
datas = MNIST(str(data_path), transform=ut, train=False)
|
||||
except RuntimeError:
|
||||
datas = MNIST(str(data_path), transform=utility_transforms, train=False, download=True)
|
||||
datas = MNIST(str(data_path), transform=ut, train=False, download=True)
|
||||
valid_d = DataLoader(datas, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
|
||||
model = torch.load(checkpoint_path, map_location=DEVICE).eval()
|
||||
n_samples = int(len(d) * ratio)
|
||||
n_samples = int(len(valid_d) * ratio)
|
||||
|
||||
with tqdm(total=n_samples, desc='Validation Run: ') as pbar:
|
||||
for idx, (valid_batch_x, valid_batch_y) in enumerate(valid_d):
|
||||
@ -119,6 +117,10 @@ def validate(checkpoint_path, ratio=0.1):
|
||||
return acc
|
||||
|
||||
|
||||
def new_train_storage_df():
|
||||
return pd.DataFrame(columns=['Epoch', 'Batch', 'Metric', 'Score'])
|
||||
|
||||
|
||||
def checkpoint_and_validate(model, out_path, epoch_n, final_model=False):
|
||||
out_path = Path(out_path)
|
||||
ckpt_path = set_checkpoint(model, out_path, epoch_n, final_model=final_model)
|
||||
@ -130,18 +132,28 @@ def plot_training_result(path_to_dataframe):
|
||||
# load from Drive
|
||||
df = pd.read_csv(path_to_dataframe, index_col=0)
|
||||
|
||||
# Set up figure
|
||||
fig, ax1 = plt.subplots() # initializes figure and plots
|
||||
ax2 = ax1.twinx() # applies twinx to ax2, which is the second y-axis.
|
||||
|
||||
# plots the first set of data, and sets it to ax1.
|
||||
data = df[df['Metric'] == 'BatchLoss']
|
||||
# plots the second set, and sets to ax2.
|
||||
sns.lineplot(data=data.groupby('Epoch').mean(), x='Epoch', y='Score', legend=True, ax=ax1, color='blue')
|
||||
data = df[(df['Metric'] == 'Test Accuracy') | (df['Metric'] == 'Train Accuracy')]
|
||||
sns.lineplot(data=data, x='Epoch', y='Score', marker='o', hue='Metric', legend=True)
|
||||
# plots the first set of data
|
||||
data = df[(df['Metric'] == 'Task Loss') | (df['Metric'] == 'Self Train Loss')].groupby(['Epoch', 'Metric']).mean()
|
||||
palette = sns.color_palette()[0:data.reset_index()['Metric'].unique().shape[0]]
|
||||
sns.lineplot(data=data.groupby(['Epoch', 'Metric']).mean(), x='Epoch', y='Score', hue='Metric',
|
||||
palette=palette, ax=ax1)
|
||||
|
||||
ax1.set(yscale='log')
|
||||
# plots the second set of data
|
||||
data = df[(df['Metric'] == 'Test Accuracy') | (df['Metric'] == 'Train Accuracy')]
|
||||
palette = sns.color_palette()[len(palette):data.reset_index()['Metric'].unique().shape[0] + len(palette)]
|
||||
sns.lineplot(data=data, x='Epoch', y='Score', marker='o', hue='Metric', palette=palette)
|
||||
|
||||
ax1.set(yscale='log', ylabel='Losses')
|
||||
ax1.set_title('Training Lineplot')
|
||||
ax2.set(ylabel='Accuracy')
|
||||
|
||||
fig.legend(loc="center right", title='Metric', bbox_to_anchor=(0.85, 0.5))
|
||||
ax1.get_legend().remove()
|
||||
ax2.get_legend().remove()
|
||||
plt.tight_layout()
|
||||
if debug:
|
||||
plt.show()
|
||||
@ -155,16 +167,17 @@ if __name__ == '__main__':
|
||||
training = False
|
||||
plotting = False
|
||||
particle_analysis = True
|
||||
as_sparse_network_test = True
|
||||
|
||||
data_path = Path('data')
|
||||
data_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
run_path = Path('output') / 'mnist_test_half_size'
|
||||
run_path = Path('output') / 'mnist_self_train_100_NEW_STYLE'
|
||||
model_path = run_path / '0000_trained_model.zip'
|
||||
df_store_path = run_path / 'train_store.csv'
|
||||
|
||||
if training:
|
||||
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||
|
||||
try:
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms)
|
||||
except RuntimeError:
|
||||
@ -177,7 +190,7 @@ if __name__ == '__main__':
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.004, momentum=0.9)
|
||||
|
||||
train_store = pd.DataFrame(columns=['Epoch', 'Batch', 'Metric', 'Score'])
|
||||
train_store = new_train_storage_df()
|
||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||
@ -187,12 +200,9 @@ if __name__ == '__main__':
|
||||
metric = None
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||
if self_train and is_self_train_epoch:
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
combined_self_train_loss = metanet.combined_self_train()
|
||||
combined_self_train_loss.backward()
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
self_train_loss = metanet.combined_self_train(optimizer)
|
||||
step_log = dict(Epoch=epoch, Batch=batch, Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
@ -206,7 +216,7 @@ if __name__ == '__main__':
|
||||
optimizer.step()
|
||||
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='BatchLoss', Score=loss.item())
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if is_validation_epoch:
|
||||
metric(y.cpu(), batch_y.cpu())
|
||||
@ -223,23 +233,39 @@ if __name__ == '__main__':
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
if particle_analysis:
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists())
|
||||
train_store = new_train_storage_df()
|
||||
|
||||
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
|
||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
train_store.to_csv(run_path / 'train_store.csv')
|
||||
train_store.to_csv(df_store_path)
|
||||
|
||||
if plotting:
|
||||
plot_training_result(run_path / 'train_store.csv')
|
||||
plot_training_result(df_store_path)
|
||||
|
||||
if particle_analysis:
|
||||
model_path = next(run_path.glob('*.tp'))
|
||||
model_path = next(run_path.glob('*ckpt.tp'))
|
||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||
analysis_dict = defaultdict(dict)
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
for particle in latest_model.particles:
|
||||
analysis_dict[particle.name]['is_diverged'] = particle.are_weights_diverged()
|
||||
test_for_fixpoints(counter_dict, latest_model.particles)
|
||||
|
||||
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(counter_dict)))
|
||||
zero_ident = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('identity_func')
|
||||
zero_other = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('other_func')
|
||||
if as_sparse_network_test:
|
||||
acc_pre = validate(model_path, ratio=1)
|
||||
ident_ckpt = set_checkpoint(zero_ident, model_path.parent, -1, final_model=True)
|
||||
ident_acc_post = validate(ident_ckpt, ratio=1)
|
||||
tqdm.write(f'Zero_ident diff = {abs(ident_acc_post-acc_pre)}')
|
||||
other_ckpt = set_checkpoint(zero_other, model_path.parent, -2, final_model=True)
|
||||
other_acc_post = validate(other_ckpt, ratio=1)
|
||||
tqdm.write(f'Zero_other diff = {abs(other_acc_post - acc_pre)}')
|
||||
|
@ -1,16 +1,13 @@
|
||||
import copy
|
||||
from typing import Dict, List
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from network import Net
|
||||
|
||||
|
||||
def is_divergent(network: Net) -> bool:
|
||||
for i in network.input_weight_matrix():
|
||||
weight_value = i[0].item()
|
||||
|
||||
if np.isnan(weight_value).any() or np.isinf(weight_value).any():
|
||||
return True
|
||||
return False
|
||||
return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item()
|
||||
|
||||
|
||||
def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
|
||||
@ -19,13 +16,14 @@ def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
|
||||
target_data = network.create_target_weights(input_data)
|
||||
predicted_values = network(input_data)
|
||||
|
||||
return np.allclose(target_data.detach().numpy(), predicted_values.detach().numpy(),
|
||||
|
||||
return torch.allclose(target_data.detach(), predicted_values.detach(),
|
||||
rtol=0, atol=epsilon)
|
||||
|
||||
|
||||
def is_zero_fixpoint(network: Net, epsilon=pow(10, -5)) -> bool:
|
||||
target_data = network.create_target_weights(network.input_weight_matrix().detach())
|
||||
result = np.allclose(target_data, np.zeros_like(target_data), rtol=0, atol=epsilon)
|
||||
result = torch.allclose(target_data, torch.zeros_like(target_data), rtol=0, atol=epsilon)
|
||||
# result = bool(len(np.nonzero(network.create_target_weights(network.input_weight_matrix()))))
|
||||
return result
|
||||
|
||||
@ -49,7 +47,7 @@ def is_secondary_fixpoint(network: Net, epsilon: float = pow(10, -5)) -> bool:
|
||||
second_output = network(input_data_2)
|
||||
|
||||
# Perform the Check: all(epsilon > abs(input_data - second_output))
|
||||
check_abs_within_epsilon = np.allclose(target_data.detach().numpy(), second_output.detach().numpy(),
|
||||
check_abs_within_epsilon = torch.allclose(target_data.detach(), second_output.detach(),
|
||||
rtol=0, atol=epsilon)
|
||||
return check_abs_within_epsilon
|
||||
|
||||
@ -57,7 +55,7 @@ def is_secondary_fixpoint(network: Net, epsilon: float = pow(10, -5)) -> bool:
|
||||
def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
||||
id_functions = id_functions or list()
|
||||
|
||||
for net in nets:
|
||||
for net in tqdm(nets, desc='Fixpoint Tester', total=len(nets)):
|
||||
if is_divergent(net):
|
||||
fixpoint_counter["divergent"] += 1
|
||||
net.is_fixpoint = "divergent"
|
||||
|
25
network.py
25
network.py
@ -9,6 +9,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import optim, Tensor
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def prng():
|
||||
@ -391,6 +392,17 @@ class MetaNet(nn.Module):
|
||||
interface=self.width, width=self.out)
|
||||
)
|
||||
|
||||
def replace_with_zero(self, ident_key):
|
||||
replaced_particles = 0
|
||||
for particle in self.particles:
|
||||
if particle.is_fixpoint == ident_key:
|
||||
particle.load_state_dict(
|
||||
{key: torch.zeros_like(state) for key, state in particle.state_dict().items()}
|
||||
)
|
||||
replaced_particles += 1
|
||||
tqdm.write(f'Particle Parameters replaced: {str(replaced_particles)}')
|
||||
return self
|
||||
|
||||
def forward(self, x):
|
||||
tensor = x
|
||||
for meta_layer in self._meta_layer_list:
|
||||
@ -401,15 +413,22 @@ class MetaNet(nn.Module):
|
||||
def particles(self):
|
||||
return (cell for metalayer in self._meta_layer_list for cell in metalayer.particles)
|
||||
|
||||
def combined_self_train(self):
|
||||
def combined_self_train(self, external_optimizer):
|
||||
losses = []
|
||||
for particle in self.particles:
|
||||
# Zero your gradients for every batch!
|
||||
external_optimizer.zero_grad()
|
||||
# Intergrate optimizer and backward function
|
||||
input_data = particle.input_weight_matrix()
|
||||
target_data = particle.create_target_weights(input_data)
|
||||
output = particle(input_data)
|
||||
losses.append(F.mse_loss(output, target_data))
|
||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||
loss = F.mse_loss(output, target_data)
|
||||
losses.append(loss.detach)
|
||||
loss.backward()
|
||||
# Adjust learning weights
|
||||
external_optimizer.step()
|
||||
# return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||
return sum(losses)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
x
Reference in New Issue
Block a user