bar plots
This commit is contained in:
139
code/bar_plot.py
Normal file
139
code/bar_plot.py
Normal file
@ -0,0 +1,139 @@
|
||||
import os
|
||||
|
||||
from experiment import Experiment
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
from typing import List
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def plot_histogram(bars_dict_list: List[dict], filename='histogram_plot'):
|
||||
# catagorical
|
||||
ryb = cl.scales['10']['div']['RdYlBu']
|
||||
|
||||
data = []
|
||||
|
||||
if bars_dict_list:
|
||||
keys = bars_dict_list[0].keys()
|
||||
keyDict = defaultdict(list)
|
||||
else:
|
||||
raise IOError('This List is empty, is this intended?')
|
||||
|
||||
for key in keys:
|
||||
keyDict[key] = np.mean([bars_dict[key] for bars_dict in bars_dict_list])
|
||||
|
||||
hist = go.Bar(
|
||||
y=[keyDict.get(key, 0) for key in keys],
|
||||
x=[key for key in keys],
|
||||
showlegend=False,
|
||||
marker=dict(
|
||||
color=[ryb[bar_id] for bar_id in range(len(keys))]
|
||||
),
|
||||
)
|
||||
data.append(hist)
|
||||
|
||||
layout = dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
|
||||
# height=400, width=400,
|
||||
# margin=dict(l=20, r=20, t=20, b=20)
|
||||
)
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def line_plot(line_dict_list, filename='lineplot'):
|
||||
# lines with standard deviation
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
rdylgn = cl.scales['10']['div']['RdYlGn']
|
||||
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
|
||||
for line_id, line_dict in enumerate(line_dict_list):
|
||||
name = line_dict.get('name', 'gimme a name')
|
||||
|
||||
upper_bound = go.Scatter(
|
||||
name='Upper Bound',
|
||||
x=line_dict['x'],
|
||||
y=line_dict['upper_y'],
|
||||
mode='lines',
|
||||
marker=dict(color="#444"),
|
||||
line=dict(width=0),
|
||||
fillcolor=rdylgn_background[line_id],
|
||||
)
|
||||
|
||||
trace = go.Scatter(
|
||||
x=line_dict['x'],
|
||||
y=line_dict['main_y'],
|
||||
mode='lines',
|
||||
name=name,
|
||||
line=dict(color=line_id),
|
||||
fillcolor=rdylgn_background[line_id],
|
||||
fill='tonexty')
|
||||
|
||||
lower_bound = go.Scatter(
|
||||
name='Lower Bound',
|
||||
x=line_dict['x'],
|
||||
y=line_dict['lower_y'],
|
||||
marker=dict(color="#444"),
|
||||
line=dict(width=0),
|
||||
mode='lines')
|
||||
|
||||
data.extend([upper_bound, trace, lower_bound])
|
||||
|
||||
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
|
||||
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]):
|
||||
if os.path.isdir(absolut_file_or_folder):
|
||||
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||
search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for)
|
||||
elif absolut_file_or_folder.endswith('.dill'):
|
||||
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||
if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(file_or_folder[:-5])):
|
||||
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||
file=absolut_file_or_folder)
|
||||
)
|
||||
|
||||
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||
exp = dill.load(in_f)
|
||||
|
||||
plotting_function(exp, filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||
|
||||
else:
|
||||
pass
|
||||
# This was not a file i should look for.
|
||||
else:
|
||||
# This was either another FilyType or Plot.html alerady exists.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = build_args()
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
search_and_apply(in_file, plot_histogram, files_to_look_for=['all_counters.dill'])
|
||||
# , 'all_names.dill', 'all_notable_nets.dill'])
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,6 +1,7 @@
|
||||
import sys
|
||||
|
||||
sys.path += ['../', './']
|
||||
import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
@ -26,7 +27,7 @@ def count(counters, net, notable_nets=[]):
|
||||
return counters, notable_nets
|
||||
|
||||
with Experiment('fixpoint-density') as exp:
|
||||
exp.trials = 1000
|
||||
exp.trials = 100
|
||||
exp.epsilon = 1e-4
|
||||
net_generators = []
|
||||
for activation in ['linear', 'sigmoid', 'relu']:
|
||||
@ -43,6 +44,7 @@ with Experiment('fixpoint-density') as exp:
|
||||
net = net_generator().with_params(epsilon=exp.epsilon)
|
||||
name = str(net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias='" + str(net.get_keras_params().get('use_bias')) + "'"
|
||||
count(counters, net, notable_nets)
|
||||
K.clear_session()
|
||||
all_counters += [counters]
|
||||
all_notable_nets += [notable_nets]
|
||||
all_names += [name]
|
||||
@ -53,3 +55,5 @@ with Experiment('fixpoint-density') as exp:
|
||||
exp.log(all_names[exp_id])
|
||||
exp.log(all_counters[exp_id])
|
||||
exp.log('\n')
|
||||
|
||||
print('Done')
|
||||
|
@ -1,6 +1,10 @@
|
||||
import sys
|
||||
|
||||
sys.path += ['../', './']
|
||||
import os
|
||||
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
|
@ -1,6 +1,7 @@
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path += ['../', './']
|
||||
from typing import Tuple
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
@ -9,10 +10,32 @@ from network import *
|
||||
import keras.backend
|
||||
|
||||
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
|
||||
def generate_counters():
|
||||
"""
|
||||
Initial build of the counter dict, to store counts.
|
||||
|
||||
:rtype: dict
|
||||
:return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other'
|
||||
"""
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
"""
|
||||
Count the occurences ot the types of weight trajectories.
|
||||
|
||||
:param counters: A counter dictionary.
|
||||
:param net: A Neural Network
|
||||
:param notable_nets: A list to store and save intersting candidates
|
||||
|
||||
:rtype Tuple[dict, list]
|
||||
:return: Both the counter dictionary and the list of interessting nets.
|
||||
"""
|
||||
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
@ -28,6 +51,7 @@ def count(counters, net, notable_nets=[]):
|
||||
counters['other'] += 1
|
||||
return counters, notable_nets
|
||||
|
||||
|
||||
with Experiment('training_fixpoint') as exp:
|
||||
exp.trials = 20
|
||||
exp.selfattacks = 4
|
||||
|
@ -1,6 +1,8 @@
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path += ['../', './']
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
|
Reference in New Issue
Block a user