bar plots
This commit is contained in:
139
code/bar_plot.py
Normal file
139
code/bar_plot.py
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from experiment import Experiment
|
||||||
|
# noinspection PyUnresolvedReferences
|
||||||
|
from soup import Soup
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import plotly as pl
|
||||||
|
import plotly.graph_objs as go
|
||||||
|
|
||||||
|
import colorlover as cl
|
||||||
|
|
||||||
|
import dill
|
||||||
|
|
||||||
|
|
||||||
|
def build_args():
|
||||||
|
arg_parser = ArgumentParser()
|
||||||
|
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||||
|
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||||
|
return arg_parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def plot_histogram(bars_dict_list: List[dict], filename='histogram_plot'):
|
||||||
|
# catagorical
|
||||||
|
ryb = cl.scales['10']['div']['RdYlBu']
|
||||||
|
|
||||||
|
data = []
|
||||||
|
|
||||||
|
if bars_dict_list:
|
||||||
|
keys = bars_dict_list[0].keys()
|
||||||
|
keyDict = defaultdict(list)
|
||||||
|
else:
|
||||||
|
raise IOError('This List is empty, is this intended?')
|
||||||
|
|
||||||
|
for key in keys:
|
||||||
|
keyDict[key] = np.mean([bars_dict[key] for bars_dict in bars_dict_list])
|
||||||
|
|
||||||
|
hist = go.Bar(
|
||||||
|
y=[keyDict.get(key, 0) for key in keys],
|
||||||
|
x=[key for key in keys],
|
||||||
|
showlegend=False,
|
||||||
|
marker=dict(
|
||||||
|
color=[ryb[bar_id] for bar_id in range(len(keys))]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
data.append(hist)
|
||||||
|
|
||||||
|
layout = dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
|
||||||
|
# height=400, width=400,
|
||||||
|
# margin=dict(l=20, r=20, t=20, b=20)
|
||||||
|
)
|
||||||
|
|
||||||
|
fig = go.Figure(data=data, layout=layout)
|
||||||
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def line_plot(line_dict_list, filename='lineplot'):
|
||||||
|
# lines with standard deviation
|
||||||
|
# Transform data accordingly and plot it
|
||||||
|
data = []
|
||||||
|
rdylgn = cl.scales['10']['div']['RdYlGn']
|
||||||
|
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
|
||||||
|
for line_id, line_dict in enumerate(line_dict_list):
|
||||||
|
name = line_dict.get('name', 'gimme a name')
|
||||||
|
|
||||||
|
upper_bound = go.Scatter(
|
||||||
|
name='Upper Bound',
|
||||||
|
x=line_dict['x'],
|
||||||
|
y=line_dict['upper_y'],
|
||||||
|
mode='lines',
|
||||||
|
marker=dict(color="#444"),
|
||||||
|
line=dict(width=0),
|
||||||
|
fillcolor=rdylgn_background[line_id],
|
||||||
|
)
|
||||||
|
|
||||||
|
trace = go.Scatter(
|
||||||
|
x=line_dict['x'],
|
||||||
|
y=line_dict['main_y'],
|
||||||
|
mode='lines',
|
||||||
|
name=name,
|
||||||
|
line=dict(color=line_id),
|
||||||
|
fillcolor=rdylgn_background[line_id],
|
||||||
|
fill='tonexty')
|
||||||
|
|
||||||
|
lower_bound = go.Scatter(
|
||||||
|
name='Lower Bound',
|
||||||
|
x=line_dict['x'],
|
||||||
|
y=line_dict['lower_y'],
|
||||||
|
marker=dict(color="#444"),
|
||||||
|
line=dict(width=0),
|
||||||
|
mode='lines')
|
||||||
|
|
||||||
|
data.extend([upper_bound, trace, lower_bound])
|
||||||
|
|
||||||
|
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
|
||||||
|
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||||
|
|
||||||
|
fig = go.Figure(data=data, layout=layout)
|
||||||
|
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]):
|
||||||
|
if os.path.isdir(absolut_file_or_folder):
|
||||||
|
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||||
|
search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for)
|
||||||
|
elif absolut_file_or_folder.endswith('.dill'):
|
||||||
|
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||||
|
if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(file_or_folder[:-5])):
|
||||||
|
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||||
|
file=absolut_file_or_folder)
|
||||||
|
)
|
||||||
|
|
||||||
|
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||||
|
exp = dill.load(in_f)
|
||||||
|
|
||||||
|
plotting_function(exp, filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||||
|
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
# This was not a file i should look for.
|
||||||
|
else:
|
||||||
|
# This was either another FilyType or Plot.html alerady exists.
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
args = build_args()
|
||||||
|
in_file = args.in_file[0]
|
||||||
|
out_file = args.out_file
|
||||||
|
|
||||||
|
search_and_apply(in_file, plot_histogram, files_to_look_for=['all_counters.dill'])
|
||||||
|
# , 'all_names.dill', 'all_notable_nets.dill'])
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,6 +1,7 @@
|
|||||||
import sys
|
import sys
|
||||||
|
import os
|
||||||
sys.path += ['../', './']
|
# Concat top Level dir to system environmental variables
|
||||||
|
sys.path += os.path.join('..', '.')
|
||||||
|
|
||||||
from util import *
|
from util import *
|
||||||
from experiment import *
|
from experiment import *
|
||||||
@ -26,7 +27,7 @@ def count(counters, net, notable_nets=[]):
|
|||||||
return counters, notable_nets
|
return counters, notable_nets
|
||||||
|
|
||||||
with Experiment('fixpoint-density') as exp:
|
with Experiment('fixpoint-density') as exp:
|
||||||
exp.trials = 1000
|
exp.trials = 100
|
||||||
exp.epsilon = 1e-4
|
exp.epsilon = 1e-4
|
||||||
net_generators = []
|
net_generators = []
|
||||||
for activation in ['linear', 'sigmoid', 'relu']:
|
for activation in ['linear', 'sigmoid', 'relu']:
|
||||||
@ -43,6 +44,7 @@ with Experiment('fixpoint-density') as exp:
|
|||||||
net = net_generator().with_params(epsilon=exp.epsilon)
|
net = net_generator().with_params(epsilon=exp.epsilon)
|
||||||
name = str(net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias='" + str(net.get_keras_params().get('use_bias')) + "'"
|
name = str(net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias='" + str(net.get_keras_params().get('use_bias')) + "'"
|
||||||
count(counters, net, notable_nets)
|
count(counters, net, notable_nets)
|
||||||
|
K.clear_session()
|
||||||
all_counters += [counters]
|
all_counters += [counters]
|
||||||
all_notable_nets += [notable_nets]
|
all_notable_nets += [notable_nets]
|
||||||
all_names += [name]
|
all_names += [name]
|
||||||
@ -52,4 +54,6 @@ with Experiment('fixpoint-density') as exp:
|
|||||||
for exp_id, counter in enumerate(all_counters):
|
for exp_id, counter in enumerate(all_counters):
|
||||||
exp.log(all_names[exp_id])
|
exp.log(all_names[exp_id])
|
||||||
exp.log(all_counters[exp_id])
|
exp.log(all_counters[exp_id])
|
||||||
exp.log('\n')
|
exp.log('\n')
|
||||||
|
|
||||||
|
print('Done')
|
||||||
|
@ -1,6 +1,10 @@
|
|||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.path += ['../', './']
|
import os
|
||||||
|
|
||||||
|
# Concat top Level dir to system environmental variables
|
||||||
|
sys.path += os.path.join('..', '.')
|
||||||
|
|
||||||
|
|
||||||
from util import *
|
from util import *
|
||||||
from experiment import *
|
from experiment import *
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
import sys
|
import sys
|
||||||
|
import os
|
||||||
|
|
||||||
sys.path += ['../', './']
|
from typing import Tuple
|
||||||
|
|
||||||
from util import *
|
from util import *
|
||||||
from experiment import *
|
from experiment import *
|
||||||
@ -9,10 +10,32 @@ from network import *
|
|||||||
import keras.backend
|
import keras.backend
|
||||||
|
|
||||||
|
|
||||||
|
# Concat top Level dir to system environmental variables
|
||||||
|
sys.path += os.path.join('..', '.')
|
||||||
|
|
||||||
|
|
||||||
def generate_counters():
|
def generate_counters():
|
||||||
|
"""
|
||||||
|
Initial build of the counter dict, to store counts.
|
||||||
|
|
||||||
|
:rtype: dict
|
||||||
|
:return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other'
|
||||||
|
"""
|
||||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||||
|
|
||||||
|
|
||||||
def count(counters, net, notable_nets=[]):
|
def count(counters, net, notable_nets=[]):
|
||||||
|
"""
|
||||||
|
Count the occurences ot the types of weight trajectories.
|
||||||
|
|
||||||
|
:param counters: A counter dictionary.
|
||||||
|
:param net: A Neural Network
|
||||||
|
:param notable_nets: A list to store and save intersting candidates
|
||||||
|
|
||||||
|
:rtype Tuple[dict, list]
|
||||||
|
:return: Both the counter dictionary and the list of interessting nets.
|
||||||
|
"""
|
||||||
|
|
||||||
if net.is_diverged():
|
if net.is_diverged():
|
||||||
counters['divergent'] += 1
|
counters['divergent'] += 1
|
||||||
elif net.is_fixpoint():
|
elif net.is_fixpoint():
|
||||||
@ -28,6 +51,7 @@ def count(counters, net, notable_nets=[]):
|
|||||||
counters['other'] += 1
|
counters['other'] += 1
|
||||||
return counters, notable_nets
|
return counters, notable_nets
|
||||||
|
|
||||||
|
|
||||||
with Experiment('training_fixpoint') as exp:
|
with Experiment('training_fixpoint') as exp:
|
||||||
exp.trials = 20
|
exp.trials = 20
|
||||||
exp.selfattacks = 4
|
exp.selfattacks = 4
|
||||||
@ -69,4 +93,4 @@ with Experiment('training_fixpoint') as exp:
|
|||||||
for exp_id, name in enumerate(all_names):
|
for exp_id, name in enumerate(all_names):
|
||||||
exp.log(all_names[exp_id])
|
exp.log(all_names[exp_id])
|
||||||
exp.log(all_data[exp_id])
|
exp.log(all_data[exp_id])
|
||||||
exp.log('\n')
|
exp.log('\n')
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
import sys
|
import sys
|
||||||
|
import os
|
||||||
|
|
||||||
sys.path += ['../', './']
|
# Concat top Level dir to system environmental variables
|
||||||
|
sys.path += os.path.join('..', '.')
|
||||||
|
|
||||||
from util import *
|
from util import *
|
||||||
from experiment import *
|
from experiment import *
|
||||||
|
Reference in New Issue
Block a user