network test

This commit is contained in:
Steffen Illium
2022-02-23 12:08:49 +01:00
parent f0ad875e79
commit 0bc3b62340
3 changed files with 69 additions and 22 deletions

View File

@ -1,5 +1,8 @@
from collections import defaultdict
from torch import nn
import functionalities_test
from network import Net
from functionalities_test import is_identity_function
from tqdm import tqdm,trange
@ -118,12 +121,12 @@ class SparseLayer(nn.Module):
def test_sparse_layer():
net = SparseLayer(500) #50 parallel nets
loss_fn = torch.nn.MSELoss(reduction="sum")
optimizer = torch.optim.SGD(net.weights, lr=0.004, momentum=0.9)
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
for train_iteration in trange(1000):
optimizer.zero_grad()
X,Y = net.get_self_train_inputs_and_targets()
X, Y = net.get_self_train_inputs_and_targets()
out = net(X)
loss = loss_fn(out, Y)
@ -132,10 +135,10 @@ def test_sparse_layer():
# print("OUT", out.shape)
# print("LOSS", loss.item())
loss.backward(retain_graph=True)
loss.backward()
optimizer.step()
epsilon=pow(10, -5)
epsilon = pow(10, -5)
# is each of the networks self-replicating?
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
@ -261,6 +264,26 @@ def test_sparse_net():
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
batchx, batchy = next(iter(d))
metanet(batchx)
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
def test_sparse_net_sef_train():
net = SparseNetwork(30, 5, 6, 10)
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
epochs = 120
for _ in trange(epochs):
optimizer.zero_grad()
loss = net.combined_self_train()
loss.backward(retain_graph=True)
optimizer.step()
# is each of the networks self-replicating?
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
print(f"identity_fn after {epochs+1} self-train epochs: {counter}")
def test_manual_for_loop():
@ -284,7 +307,8 @@ def test_manual_for_loop():
if __name__ == '__main__':
test_sparse_layer()
# test_sparse_layer()
test_sparse_net_sef_train()
# test_sparse_net()
# for comparison
test_manual_for_loop()
# test_manual_for_loop()