implements basin experiments for soup
This commit is contained in:
		
							
								
								
									
										304
									
								
								journal_soup_basins.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										304
									
								
								journal_soup_basins.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,304 @@ | ||||
| import os | ||||
| from pathlib import Path | ||||
| import pickle | ||||
| from torch import mean | ||||
|  | ||||
| from tqdm import tqdm | ||||
| import random | ||||
| import copy | ||||
| from functionalities_test import is_identity_function, test_status, test_for_fixpoints | ||||
| from network import Net | ||||
| from visualization import plot_3d_self_train, plot_loss, plot_3d_soup | ||||
| import numpy as np | ||||
| from tabulate import tabulate | ||||
| from sklearn.metrics import mean_absolute_error as MAE | ||||
| from sklearn.metrics import mean_squared_error as MSE | ||||
| import pandas as pd | ||||
| import seaborn as sns | ||||
| from matplotlib import pyplot as plt | ||||
|  | ||||
|  | ||||
| def prng(): | ||||
|     return random.random() | ||||
|  | ||||
|  | ||||
| def l1(tup): | ||||
|     a, b = tup | ||||
|     return abs(a - b) | ||||
|  | ||||
|  | ||||
| def mean_invariate_manhattan_distance(x, y): | ||||
|     # One of these one-liners that might be smart or really dumb. Goal is to find pairwise | ||||
|     # distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean. | ||||
|     # Idea was to find weight sets that have same values but just in different positions, that would | ||||
|     # make this distance 0. | ||||
|     return np.mean(list(map(l1, zip(sorted(x.numpy()), sorted(y.numpy()))))) | ||||
|  | ||||
|  | ||||
| def distance_matrix(nets, distance="MIM", print_it=True): | ||||
|     matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))] | ||||
|     for net in range(len(nets)): | ||||
|         weights = nets[net].input_weight_matrix()[:, 0] | ||||
|         for other_net in range(len(nets)): | ||||
|             other_weights = nets[other_net].input_weight_matrix()[:, 0] | ||||
|             if distance in ["MSE"]: | ||||
|                 matrix[net][other_net] = MSE(weights, other_weights) | ||||
|             elif distance in ["MAE"]: | ||||
|                 matrix[net][other_net] = MAE(weights, other_weights) | ||||
|             elif distance in ["MIM"]: | ||||
|                 matrix[net][other_net] = mean_invariate_manhattan_distance(weights, other_weights) | ||||
|  | ||||
|     if print_it: | ||||
|         print(f"\nDistance matrix (all to all) [{distance}]:") | ||||
|         headers = [i.name for i in nets] | ||||
|         print(tabulate(matrix, showindex=headers, headers=headers, tablefmt='orgtbl')) | ||||
|     return matrix | ||||
|  | ||||
|  | ||||
| def distance_from_parent(nets, distance="MIM", print_it=True): | ||||
|     list_of_matrices = [] | ||||
|     parents = list(filter(lambda x: "clone" not in x.name and is_identity_function(x), nets)) | ||||
|     distance_range = range(10) | ||||
|     for parent in parents: | ||||
|         parent_weights = parent.create_target_weights(parent.input_weight_matrix()) | ||||
|         clones = list(filter(lambda y: parent.name in y.name and parent.name != y.name, nets)) | ||||
|         matrix = [[0 for _ in distance_range] for _ in range(len(clones))] | ||||
|  | ||||
|         for dist in distance_range: | ||||
|             for idx, clone in enumerate(clones): | ||||
|                 clone_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                 if distance in ["MSE"]: | ||||
|                     matrix[idx][dist] = MSE(parent_weights, clone_weights) < pow(10, -dist) | ||||
|                 elif distance in ["MAE"]: | ||||
|                     matrix[idx][dist] = MAE(parent_weights, clone_weights) < pow(10, -dist) | ||||
|                 elif distance in ["MIM"]: | ||||
|                     matrix[idx][dist] = mean_invariate_manhattan_distance(parent_weights, clone_weights) < pow(10, | ||||
|                                                                                                                -dist) | ||||
|  | ||||
|         if print_it: | ||||
|             print(f"\nDistances from parent {parent.name} [{distance}]:") | ||||
|             col_headers = [str(f"10e-{d}") for d in distance_range] | ||||
|             row_headers = [str(f"clone_{i}") for i in range(len(clones))] | ||||
|             print(tabulate(matrix, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|  | ||||
|         list_of_matrices.append(matrix) | ||||
|  | ||||
|     return list_of_matrices | ||||
|  | ||||
|  | ||||
| class SoupSpawnExperiment: | ||||
|  | ||||
|     @staticmethod | ||||
|     def apply_noise(network, noise: int): | ||||
|         """ Changing the weights of a network to values + noise """ | ||||
|  | ||||
|         for layer_id, layer_name in enumerate(network.state_dict()): | ||||
|             for line_id, line_values in enumerate(network.state_dict()[layer_name]): | ||||
|                 for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): | ||||
|                     # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     if prng() < 0.5: | ||||
|                         network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     else: | ||||
|                         network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise | ||||
|  | ||||
|         return network | ||||
|  | ||||
|     def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate, | ||||
|                  epochs, st_steps, attack_chance, nr_clones, noise, directory) -> None: | ||||
|         self.population_size = population_size | ||||
|         self.log_step_size = log_step_size | ||||
|         self.net_input_size = net_input_size | ||||
|         self.net_hidden_size = net_hidden_size | ||||
|         self.net_out_size = net_out_size | ||||
|         self.net_learning_rate = net_learning_rate | ||||
|         self.epochs = epochs | ||||
|         self.ST_steps = st_steps | ||||
|         self.attack_chance = attack_chance | ||||
|         self.loss_history = [] | ||||
|         self.nr_clones = nr_clones | ||||
|         self.noise = noise or 10e-5 | ||||
|         print("\nNOISE:", self.noise) | ||||
|  | ||||
|         self.directory = Path(directory) | ||||
|         self.directory.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|         # Populating environment & evolving entities | ||||
|         self.nets = [] | ||||
|         self.populate_environment() | ||||
|         self.evolve() | ||||
|  | ||||
|         self.spawn_and_continue() | ||||
|         self.weights_evolution_3d_experiment() | ||||
|         # self.visualize_loss() | ||||
|         self.distance_matrix = distance_matrix(self.nets, print_it=False) | ||||
|         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) | ||||
|  | ||||
|         self.save() | ||||
|  | ||||
|     def populate_environment(self): | ||||
|         loop_population_size = tqdm(range(self.population_size)) | ||||
|         for i in loop_population_size: | ||||
|             loop_population_size.set_description("Populating experiment %s" % i) | ||||
|  | ||||
|             net_name = f"soup_net_{str(i)}" | ||||
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) | ||||
|  | ||||
|             self.nets.append(net) | ||||
|  | ||||
|     def evolve(self): | ||||
|         loop_epochs = tqdm(range(self.epochs)) | ||||
|         for i in loop_epochs: | ||||
|             loop_epochs.set_description("Evolving soup %s" % i) | ||||
|  | ||||
|             # A network attacking another network with a given percentage | ||||
|             if random.randint(1, 100) <= self.attack_chance: | ||||
|                 random_net1, random_net2 = random.sample(range(self.population_size), 2) | ||||
|                 random_net1 = self.nets[random_net1] | ||||
|                 random_net2 = self.nets[random_net2] | ||||
|                 print(f"\n Attack: {random_net1.name} -> {random_net2.name}") | ||||
|                 random_net1.attack(random_net2) | ||||
|  | ||||
|             #  Self-training each network in the population | ||||
|             for j in range(self.population_size): | ||||
|                 net = self.nets[j] | ||||
|  | ||||
|                 for _ in range(self.ST_steps): | ||||
|                     net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|  | ||||
|     def spawn_and_continue(self, number_clones: int = None): | ||||
|         number_clones = number_clones or self.nr_clones | ||||
|  | ||||
|         df = pd.DataFrame( | ||||
|             columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||
|                      'status_post']) | ||||
|  | ||||
|         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||
|         for i in range(self.population_size): | ||||
|             net = self.nets[i] | ||||
|             # We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to | ||||
|             # to see full trajectory (but the clones will be very hard to see). | ||||
|             # Make one target to compare distances to clones later when they have trained. | ||||
|             net.start_time = self.ST_steps - 150 | ||||
|             net_input_data = net.input_weight_matrix() | ||||
|             net_target_data = net.create_target_weights(net_input_data) | ||||
|  | ||||
|             if is_identity_function(net): | ||||
|                 print(f"\nNet {i} is fixpoint") | ||||
|  | ||||
|                 # Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly; | ||||
|                 # To plot clones starting after first epoch (z=ST_steps), set that as start_time! | ||||
|                 # To make sure PCA will plot the same trajectory up until this point, we clone the | ||||
|                 # parent-net's weight history as well. | ||||
|                 for j in range(number_clones): | ||||
|                     clone = Net(net.input_size, net.hidden_size, net.out_size, | ||||
|                                 f"ST_net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps) | ||||
|                     clone.load_state_dict(copy.deepcopy(net.state_dict())) | ||||
|                     rand_noise = prng() * self.noise | ||||
|                     clone = self.apply_noise(clone, rand_noise) | ||||
|                     clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) | ||||
|                     clone.number_trained = copy.deepcopy(net.number_trained) | ||||
|  | ||||
|                     # Pre Training distances (after noise application of course) | ||||
|                     clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_pre = MAE(net_target_data, clone_pre_weights) | ||||
|                     MSE_pre = MSE(net_target_data, clone_pre_weights) | ||||
|                     MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||
|  | ||||
|                     # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. | ||||
|                     for _ in range(self.epochs - 1): | ||||
|                         for _ in range(self.ST_steps): | ||||
|                             clone.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|  | ||||
|                     # Post Training distances for comparison | ||||
|                     clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_post = MAE(net_target_data, clone_post_weights) | ||||
|                     MSE_post = MSE(net_target_data, clone_post_weights) | ||||
|                     MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) | ||||
|  | ||||
|                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                     test_status(clone) | ||||
|                     if is_identity_function(clone): | ||||
|                         print(f"Clone {j} (of net_{i}) is fixpoint." | ||||
|                               f"\nMSE({i},{j}): {MSE_post}" | ||||
|                               f"\nMAE({i},{j}): {MAE_post}" | ||||
|                               f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                         self.nets.append(clone) | ||||
|  | ||||
|                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||
|                                           clone.is_fixpoint] | ||||
|  | ||||
|                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|                 for _ in range(self.epochs - 1): | ||||
|                     for _ in range(self.ST_steps): | ||||
|                         net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|                 net_weights_after = net.create_target_weights(net.input_weight_matrix()) | ||||
|                 print(f"Parent net's distance to original position." | ||||
|                       f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||
|                       f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||
|                       f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||
|  | ||||
|         self.df = df | ||||
|  | ||||
|     def weights_evolution_3d_experiment(self): | ||||
|         exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA" | ||||
|         return plot_3d_soup(self.nets, exp_name, self.directory) | ||||
|  | ||||
|     def visualize_loss(self): | ||||
|         for i in range(len(self.nets)): | ||||
|             net_loss_history = self.nets[i].loss_history | ||||
|             self.loss_history.append(net_loss_history) | ||||
|         plot_loss(self.loss_history, self.directory) | ||||
|  | ||||
|     def save(self): | ||||
|         pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb")) | ||||
|         print(f"\nSaved experiment to {self.directory}.") | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     NET_INPUT_SIZE = 4 | ||||
|     NET_OUT_SIZE = 1 | ||||
|  | ||||
|     # Define number of runs & name: | ||||
|     ST_runs = 1 | ||||
|     ST_runs_name = "test-27" | ||||
|     soup_ST_steps = 2500 | ||||
|     soup_epochs = 2 | ||||
|     soup_log_step_size = 10 | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     nr_clones = 15 | ||||
|     soup_population_size = 2 | ||||
|     soup_net_hidden_size = 2 | ||||
|     soup_net_learning_rate = 0.04 | ||||
|     soup_attack_chance = 10 | ||||
|     soup_name_hash = random.getrandbits(32) | ||||
|  | ||||
|     print(f"Running the Soup-Spawn experiment:") | ||||
|     exp_list = [] | ||||
|     for noise_factor in range(2, 5): | ||||
|         exp = SoupSpawnExperiment( | ||||
|             population_size=soup_population_size, | ||||
|             log_step_size=soup_log_step_size, | ||||
|             net_input_size=NET_INPUT_SIZE, | ||||
|             net_hidden_size=soup_net_hidden_size, | ||||
|             net_out_size=NET_OUT_SIZE, | ||||
|             net_learning_rate=soup_net_learning_rate, | ||||
|             epochs=soup_epochs, | ||||
|             st_steps=soup_ST_steps, | ||||
|             attack_chance=soup_attack_chance, | ||||
|             nr_clones=nr_clones, | ||||
|             noise=pow(10, -noise_factor), | ||||
|             directory=Path('output') / 'soup_spawn_basin' / f'{soup_name_hash}' / f'10e-{noise_factor}' | ||||
|         ) | ||||
|         exp_list.append(exp) | ||||
|  | ||||
|     # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis | ||||
|     df = pd.concat([exp.df for exp in exp_list]) | ||||
|     sns.countplot(data=df, x="noise", hue="status_post") | ||||
|     plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/fixpoint_status_countplot.png") | ||||
|  | ||||
|     # Catplot (either kind="point" or "box") that shows before-after training distances to parent | ||||
|     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') | ||||
|     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) | ||||
|     plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/clone_distance_catplot.png") | ||||
							
								
								
									
										266
									
								
								journal_soup_robustness.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										266
									
								
								journal_soup_robustness.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,266 @@ | ||||
| import copy | ||||
| import random | ||||
| import os.path | ||||
| import pickle | ||||
| from pathlib import Path | ||||
| from typing import Union | ||||
|  | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| import seaborn as sns | ||||
| from tqdm import tqdm | ||||
| from matplotlib import pyplot as plt | ||||
| from torch.nn import functional as F | ||||
| from tabulate import tabulate | ||||
|  | ||||
| from experiments.helpers import check_folder, summary_fixpoint_percentage, summary_fixpoint_experiment | ||||
| from functionalities_test import test_for_fixpoints, is_zero_fixpoint, is_divergent, is_identity_function | ||||
| from network import Net | ||||
| from visualization import plot_loss, bar_chart_fixpoints, plot_3d_soup, line_chart_fixpoints | ||||
|  | ||||
|  | ||||
| def prng(): | ||||
|     return random.random() | ||||
|  | ||||
|  | ||||
| class SoupRobustnessExperiment: | ||||
|  | ||||
|     @staticmethod | ||||
|     def apply_noise(network, noise: int): | ||||
|         """ Changing the weights of a network to values + noise """ | ||||
|         for layer_id, layer_name in enumerate(network.state_dict()): | ||||
|             for line_id, line_values in enumerate(network.state_dict()[layer_name]): | ||||
|                 for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): | ||||
|                     # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     if prng() < 0.5: | ||||
|                         network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     else: | ||||
|                         network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise | ||||
|  | ||||
|         return network | ||||
|  | ||||
|     def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance, | ||||
|                  train_nets, ST_steps, epochs, log_step_size, directory: Union[str, Path]): | ||||
|         super().__init__() | ||||
|         self.population_size = population_size | ||||
|  | ||||
|         self.net_input_size = net_i_size | ||||
|         self.net_hidden_size = net_h_size | ||||
|         self.net_out_size = net_o_size | ||||
|         self.net_learning_rate = learning_rate | ||||
|         self.attack_chance = attack_chance | ||||
|         self.train_nets = train_nets | ||||
|         # self.SA_steps = SA_steps | ||||
|         self.ST_steps = ST_steps | ||||
|         self.epochs = epochs | ||||
|         self.log_step_size = log_step_size | ||||
|  | ||||
|         self.loss_history = [] | ||||
|  | ||||
|         self.fixpoint_counters = { | ||||
|             "identity_func": 0, | ||||
|             "divergent": 0, | ||||
|             "fix_zero": 0, | ||||
|             "fix_weak": 0, | ||||
|             "fix_sec": 0, | ||||
|             "other_func": 0 | ||||
|         } | ||||
|         # <self.fixpoint_counters_history> is used for keeping track of the amount of fixpoints in % | ||||
|         self.fixpoint_counters_history = [] | ||||
|         self.id_functions = [] | ||||
|  | ||||
|         self.directory = Path(directory) | ||||
|         self.directory.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|         self.population = [] | ||||
|         self.populate_environment() | ||||
|  | ||||
|         self.evolve() | ||||
|         self.fixpoint_percentage() | ||||
|         self.weights_evolution_3d_experiment() | ||||
|         self.count_fixpoints() | ||||
|         self.visualize_loss() | ||||
|  | ||||
|         self.time_to_vergence, self.time_as_fixpoint = self.test_robustness() | ||||
|  | ||||
|     def populate_environment(self): | ||||
|         loop_population_size = tqdm(range(self.population_size)) | ||||
|         for i in tqdm(range(self.population_size)): | ||||
|             loop_population_size.set_description("Populating soup experiment %s" % i) | ||||
|  | ||||
|             net_name = f"soup_network_{i}" | ||||
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) | ||||
|             self.population.append(net) | ||||
|  | ||||
|     def evolve(self): | ||||
|         """ Evolving consists of attacking & self-training. """ | ||||
|  | ||||
|         loop_epochs = tqdm(range(self.epochs)) | ||||
|         for i in loop_epochs: | ||||
|             loop_epochs.set_description("Evolving soup %s" % i) | ||||
|  | ||||
|             # A network attacking another network with a given percentage | ||||
|             if random.randint(1, 100) <= self.attack_chance: | ||||
|                 random_net1, random_net2 = random.sample(range(self.population_size), 2) | ||||
|                 random_net1 = self.population[random_net1] | ||||
|                 random_net2 = self.population[random_net2] | ||||
|                 print(f"\n Attack: {random_net1.name} -> {random_net2.name}") | ||||
|                 random_net1.attack(random_net2) | ||||
|  | ||||
|             #  Self-training each network in the population | ||||
|             for j in range(self.population_size): | ||||
|                 net = self.population[j] | ||||
|  | ||||
|                 for _ in range(self.ST_steps): | ||||
|                     net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|  | ||||
|             # Testing for fixpoints after each batch of ST steps to see relevant data | ||||
|             if i % self.ST_steps == 0: | ||||
|                 test_for_fixpoints(self.fixpoint_counters, self.population) | ||||
|                 fixpoints_percentage = round(self.fixpoint_counters["identity_func"] / self.population_size, 1) | ||||
|                 self.fixpoint_counters_history.append(fixpoints_percentage) | ||||
|  | ||||
|             # Resetting the fixpoint counter. Last iteration not to be reset - | ||||
|             #  it is important for the bar_chart_fixpoints(). | ||||
|             if i < self.epochs: | ||||
|                 self.reset_fixpoint_counters() | ||||
|  | ||||
|     def test_robustness(self, print_it=True, noise_levels=10, seeds=10): | ||||
|         # assert (len(self.id_functions) == 1 and seeds > 1) or (len(self.id_functions) > 1 and seeds == 1) | ||||
|         is_synthetic = True if len(self.id_functions) > 1 and seeds == 1 else False | ||||
|         avg_time_to_vergence = [[0 for _ in range(noise_levels)] for _ in | ||||
|                                 range(seeds if is_synthetic else len(self.id_functions))] | ||||
|         avg_time_as_fixpoint = [[0 for _ in range(noise_levels)] for _ in | ||||
|                                 range(seeds if is_synthetic else len(self.id_functions))] | ||||
|         row_headers = [] | ||||
|         data_pos = 0 | ||||
|         # This checks wether to use synthetic setting with multiple seeds | ||||
|         #   or multi network settings with a singlee seed | ||||
|  | ||||
|         df = pd.DataFrame(columns=['seed', 'noise_level', 'application_step', 'absolute_loss']) | ||||
|         for i, fixpoint in enumerate(self.id_functions):  # 1 / n | ||||
|             row_headers.append(fixpoint.name) | ||||
|             for seed in range(seeds):  # n / 1 | ||||
|                 for noise_level in range(noise_levels): | ||||
|                     self_application_steps = 1 | ||||
|                     clone = Net(fixpoint.input_size, fixpoint.hidden_size, fixpoint.out_size, | ||||
|                                 f"{fixpoint.name}_clone_noise10e-{noise_level}") | ||||
|                     clone.load_state_dict(copy.deepcopy(fixpoint.state_dict())) | ||||
|                     rand_noise = prng() * pow(10, -noise_level)  # n / 1 | ||||
|                     clone = self.apply_noise(clone, rand_noise) | ||||
|  | ||||
|                     while not is_zero_fixpoint(clone) and not is_divergent(clone): | ||||
|                         if is_identity_function(clone): | ||||
|                             avg_time_as_fixpoint[i][noise_level] += 1 | ||||
|  | ||||
|                         # -> before | ||||
|                         clone_weight_pre_application = clone.input_weight_matrix() | ||||
|                         target_data_pre_application = clone.create_target_weights(clone_weight_pre_application) | ||||
|  | ||||
|                         clone.self_application(1, self.log_step_size) | ||||
|                         avg_time_to_vergence[i][noise_level] += 1 | ||||
|                         # -> after | ||||
|                         clone_weight_post_application = clone.input_weight_matrix() | ||||
|                         target_data_post_application = clone.create_target_weights(clone_weight_post_application) | ||||
|  | ||||
|                         absolute_loss = F.l1_loss(target_data_pre_application, target_data_post_application).item() | ||||
|  | ||||
|                         setting = i if is_synthetic else seed | ||||
|  | ||||
|                         df.loc[data_pos] = [setting, noise_level, self_application_steps, absolute_loss] | ||||
|                         data_pos += 1 | ||||
|                         self_application_steps += 1 | ||||
|  | ||||
|         # calculate the average: | ||||
|         df = df.replace([np.inf, -np.inf], np.nan) | ||||
|         df = df.dropna() | ||||
|         # sns.set(rc={'figure.figsize': (10, 50)}) | ||||
|         bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box', | ||||
|                          col='noise_level', col_wrap=3, showfliers=False) | ||||
|         directory = Path('output') / 'robustness' | ||||
|         filename = f"absolute_loss_perapplication_boxplot_grid.png" | ||||
|         filepath = directory / filename | ||||
|  | ||||
|         plt.savefig(str(filepath)) | ||||
|  | ||||
|         if print_it: | ||||
|             col_headers = [str(f"10e-{d}") for d in range(noise_levels)] | ||||
|  | ||||
|             print(f"\nAppplications steps until divergence / zero: ") | ||||
|             print(tabulate(avg_time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|  | ||||
|             print(f"\nTime as fixpoint: ") | ||||
|             print(tabulate(avg_time_as_fixpoint, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|  | ||||
|         return avg_time_as_fixpoint, avg_time_to_vergence | ||||
|  | ||||
|     def weights_evolution_3d_experiment(self): | ||||
|         exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs" | ||||
|         return plot_3d_soup(self.population, exp_name, self.directory) | ||||
|  | ||||
|     def count_fixpoints(self): | ||||
|         self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.population) | ||||
|         exp_details = f"Evolution steps: {self.epochs} epochs" | ||||
|         bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory, self.net_learning_rate, | ||||
|                             exp_details) | ||||
|  | ||||
|     def fixpoint_percentage(self): | ||||
|         runs = self.epochs / self.ST_steps | ||||
|         SA_steps = None | ||||
|         line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory, | ||||
|                              self.population_size) | ||||
|  | ||||
|     def visualize_loss(self): | ||||
|         for i in range(len(self.population)): | ||||
|             net_loss_history = self.population[i].loss_history | ||||
|             self.loss_history.append(net_loss_history) | ||||
|  | ||||
|         plot_loss(self.loss_history, self.directory) | ||||
|  | ||||
|     def reset_fixpoint_counters(self): | ||||
|         self.fixpoint_counters = { | ||||
|             "identity_func": 0, | ||||
|             "divergent": 0, | ||||
|             "fix_zero": 0, | ||||
|             "fix_weak": 0, | ||||
|             "fix_sec": 0, | ||||
|             "other_func": 0 | ||||
|         } | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     NET_INPUT_SIZE = 4 | ||||
|     NET_OUT_SIZE = 1 | ||||
|  | ||||
|     soup_epochs = 100 | ||||
|     soup_log_step_size = 5 | ||||
|     soup_ST_steps = 20 | ||||
|     # soup_SA_steps = 10 | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     soup_population_size = 20 | ||||
|     soup_net_hidden_size = 2 | ||||
|     soup_net_learning_rate = 0.04 | ||||
|  | ||||
|     # soup_attack_chance in % | ||||
|     soup_attack_chance = 10 | ||||
|  | ||||
|     # not used yet: soup_train_nets has 3 possible values "no", "before_SA", "after_SA". | ||||
|     soup_train_nets = "no" | ||||
|     soup_name_hash = random.getrandbits(32) | ||||
|     soup_synthetic = True | ||||
|  | ||||
|     print(f"Running the robustness comparison experiment:") | ||||
|     SoupRobustnessExperiment( | ||||
|         population_size=soup_population_size, | ||||
|         net_i_size=NET_INPUT_SIZE, | ||||
|         net_h_size=soup_net_hidden_size, | ||||
|         net_o_size=NET_OUT_SIZE, | ||||
|         learning_rate=soup_net_learning_rate, | ||||
|         attack_chance=soup_attack_chance, | ||||
|         train_nets=soup_train_nets, | ||||
|         ST_steps=soup_ST_steps, | ||||
|         epochs=soup_epochs, | ||||
|         log_step_size=soup_log_step_size, | ||||
|         directory=Path('output') / 'robustness' / f'{soup_name_hash}' | ||||
|     ) | ||||
		Reference in New Issue
	
	Block a user
	 ru43zex
					ru43zex