implements basin experiments for soup
This commit is contained in:
		
							
								
								
									
										304
									
								
								journal_soup_basins.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										304
									
								
								journal_soup_basins.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,304 @@ | |||||||
|  | import os | ||||||
|  | from pathlib import Path | ||||||
|  | import pickle | ||||||
|  | from torch import mean | ||||||
|  |  | ||||||
|  | from tqdm import tqdm | ||||||
|  | import random | ||||||
|  | import copy | ||||||
|  | from functionalities_test import is_identity_function, test_status, test_for_fixpoints | ||||||
|  | from network import Net | ||||||
|  | from visualization import plot_3d_self_train, plot_loss, plot_3d_soup | ||||||
|  | import numpy as np | ||||||
|  | from tabulate import tabulate | ||||||
|  | from sklearn.metrics import mean_absolute_error as MAE | ||||||
|  | from sklearn.metrics import mean_squared_error as MSE | ||||||
|  | import pandas as pd | ||||||
|  | import seaborn as sns | ||||||
|  | from matplotlib import pyplot as plt | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def prng(): | ||||||
|  |     return random.random() | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def l1(tup): | ||||||
|  |     a, b = tup | ||||||
|  |     return abs(a - b) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def mean_invariate_manhattan_distance(x, y): | ||||||
|  |     # One of these one-liners that might be smart or really dumb. Goal is to find pairwise | ||||||
|  |     # distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean. | ||||||
|  |     # Idea was to find weight sets that have same values but just in different positions, that would | ||||||
|  |     # make this distance 0. | ||||||
|  |     return np.mean(list(map(l1, zip(sorted(x.numpy()), sorted(y.numpy()))))) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def distance_matrix(nets, distance="MIM", print_it=True): | ||||||
|  |     matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))] | ||||||
|  |     for net in range(len(nets)): | ||||||
|  |         weights = nets[net].input_weight_matrix()[:, 0] | ||||||
|  |         for other_net in range(len(nets)): | ||||||
|  |             other_weights = nets[other_net].input_weight_matrix()[:, 0] | ||||||
|  |             if distance in ["MSE"]: | ||||||
|  |                 matrix[net][other_net] = MSE(weights, other_weights) | ||||||
|  |             elif distance in ["MAE"]: | ||||||
|  |                 matrix[net][other_net] = MAE(weights, other_weights) | ||||||
|  |             elif distance in ["MIM"]: | ||||||
|  |                 matrix[net][other_net] = mean_invariate_manhattan_distance(weights, other_weights) | ||||||
|  |  | ||||||
|  |     if print_it: | ||||||
|  |         print(f"\nDistance matrix (all to all) [{distance}]:") | ||||||
|  |         headers = [i.name for i in nets] | ||||||
|  |         print(tabulate(matrix, showindex=headers, headers=headers, tablefmt='orgtbl')) | ||||||
|  |     return matrix | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def distance_from_parent(nets, distance="MIM", print_it=True): | ||||||
|  |     list_of_matrices = [] | ||||||
|  |     parents = list(filter(lambda x: "clone" not in x.name and is_identity_function(x), nets)) | ||||||
|  |     distance_range = range(10) | ||||||
|  |     for parent in parents: | ||||||
|  |         parent_weights = parent.create_target_weights(parent.input_weight_matrix()) | ||||||
|  |         clones = list(filter(lambda y: parent.name in y.name and parent.name != y.name, nets)) | ||||||
|  |         matrix = [[0 for _ in distance_range] for _ in range(len(clones))] | ||||||
|  |  | ||||||
|  |         for dist in distance_range: | ||||||
|  |             for idx, clone in enumerate(clones): | ||||||
|  |                 clone_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||||
|  |                 if distance in ["MSE"]: | ||||||
|  |                     matrix[idx][dist] = MSE(parent_weights, clone_weights) < pow(10, -dist) | ||||||
|  |                 elif distance in ["MAE"]: | ||||||
|  |                     matrix[idx][dist] = MAE(parent_weights, clone_weights) < pow(10, -dist) | ||||||
|  |                 elif distance in ["MIM"]: | ||||||
|  |                     matrix[idx][dist] = mean_invariate_manhattan_distance(parent_weights, clone_weights) < pow(10, | ||||||
|  |                                                                                                                -dist) | ||||||
|  |  | ||||||
|  |         if print_it: | ||||||
|  |             print(f"\nDistances from parent {parent.name} [{distance}]:") | ||||||
|  |             col_headers = [str(f"10e-{d}") for d in distance_range] | ||||||
|  |             row_headers = [str(f"clone_{i}") for i in range(len(clones))] | ||||||
|  |             print(tabulate(matrix, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||||
|  |  | ||||||
|  |         list_of_matrices.append(matrix) | ||||||
|  |  | ||||||
|  |     return list_of_matrices | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SoupSpawnExperiment: | ||||||
|  |  | ||||||
|  |     @staticmethod | ||||||
|  |     def apply_noise(network, noise: int): | ||||||
|  |         """ Changing the weights of a network to values + noise """ | ||||||
|  |  | ||||||
|  |         for layer_id, layer_name in enumerate(network.state_dict()): | ||||||
|  |             for line_id, line_values in enumerate(network.state_dict()[layer_name]): | ||||||
|  |                 for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): | ||||||
|  |                     # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||||
|  |                     if prng() < 0.5: | ||||||
|  |                         network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||||
|  |                     else: | ||||||
|  |                         network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise | ||||||
|  |  | ||||||
|  |         return network | ||||||
|  |  | ||||||
|  |     def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate, | ||||||
|  |                  epochs, st_steps, attack_chance, nr_clones, noise, directory) -> None: | ||||||
|  |         self.population_size = population_size | ||||||
|  |         self.log_step_size = log_step_size | ||||||
|  |         self.net_input_size = net_input_size | ||||||
|  |         self.net_hidden_size = net_hidden_size | ||||||
|  |         self.net_out_size = net_out_size | ||||||
|  |         self.net_learning_rate = net_learning_rate | ||||||
|  |         self.epochs = epochs | ||||||
|  |         self.ST_steps = st_steps | ||||||
|  |         self.attack_chance = attack_chance | ||||||
|  |         self.loss_history = [] | ||||||
|  |         self.nr_clones = nr_clones | ||||||
|  |         self.noise = noise or 10e-5 | ||||||
|  |         print("\nNOISE:", self.noise) | ||||||
|  |  | ||||||
|  |         self.directory = Path(directory) | ||||||
|  |         self.directory.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
|  |         # Populating environment & evolving entities | ||||||
|  |         self.nets = [] | ||||||
|  |         self.populate_environment() | ||||||
|  |         self.evolve() | ||||||
|  |  | ||||||
|  |         self.spawn_and_continue() | ||||||
|  |         self.weights_evolution_3d_experiment() | ||||||
|  |         # self.visualize_loss() | ||||||
|  |         self.distance_matrix = distance_matrix(self.nets, print_it=False) | ||||||
|  |         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) | ||||||
|  |  | ||||||
|  |         self.save() | ||||||
|  |  | ||||||
|  |     def populate_environment(self): | ||||||
|  |         loop_population_size = tqdm(range(self.population_size)) | ||||||
|  |         for i in loop_population_size: | ||||||
|  |             loop_population_size.set_description("Populating experiment %s" % i) | ||||||
|  |  | ||||||
|  |             net_name = f"soup_net_{str(i)}" | ||||||
|  |             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) | ||||||
|  |  | ||||||
|  |             self.nets.append(net) | ||||||
|  |  | ||||||
|  |     def evolve(self): | ||||||
|  |         loop_epochs = tqdm(range(self.epochs)) | ||||||
|  |         for i in loop_epochs: | ||||||
|  |             loop_epochs.set_description("Evolving soup %s" % i) | ||||||
|  |  | ||||||
|  |             # A network attacking another network with a given percentage | ||||||
|  |             if random.randint(1, 100) <= self.attack_chance: | ||||||
|  |                 random_net1, random_net2 = random.sample(range(self.population_size), 2) | ||||||
|  |                 random_net1 = self.nets[random_net1] | ||||||
|  |                 random_net2 = self.nets[random_net2] | ||||||
|  |                 print(f"\n Attack: {random_net1.name} -> {random_net2.name}") | ||||||
|  |                 random_net1.attack(random_net2) | ||||||
|  |  | ||||||
|  |             #  Self-training each network in the population | ||||||
|  |             for j in range(self.population_size): | ||||||
|  |                 net = self.nets[j] | ||||||
|  |  | ||||||
|  |                 for _ in range(self.ST_steps): | ||||||
|  |                     net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||||
|  |  | ||||||
|  |     def spawn_and_continue(self, number_clones: int = None): | ||||||
|  |         number_clones = number_clones or self.nr_clones | ||||||
|  |  | ||||||
|  |         df = pd.DataFrame( | ||||||
|  |             columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||||
|  |                      'status_post']) | ||||||
|  |  | ||||||
|  |         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||||
|  |         for i in range(self.population_size): | ||||||
|  |             net = self.nets[i] | ||||||
|  |             # We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to | ||||||
|  |             # to see full trajectory (but the clones will be very hard to see). | ||||||
|  |             # Make one target to compare distances to clones later when they have trained. | ||||||
|  |             net.start_time = self.ST_steps - 150 | ||||||
|  |             net_input_data = net.input_weight_matrix() | ||||||
|  |             net_target_data = net.create_target_weights(net_input_data) | ||||||
|  |  | ||||||
|  |             if is_identity_function(net): | ||||||
|  |                 print(f"\nNet {i} is fixpoint") | ||||||
|  |  | ||||||
|  |                 # Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly; | ||||||
|  |                 # To plot clones starting after first epoch (z=ST_steps), set that as start_time! | ||||||
|  |                 # To make sure PCA will plot the same trajectory up until this point, we clone the | ||||||
|  |                 # parent-net's weight history as well. | ||||||
|  |                 for j in range(number_clones): | ||||||
|  |                     clone = Net(net.input_size, net.hidden_size, net.out_size, | ||||||
|  |                                 f"ST_net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps) | ||||||
|  |                     clone.load_state_dict(copy.deepcopy(net.state_dict())) | ||||||
|  |                     rand_noise = prng() * self.noise | ||||||
|  |                     clone = self.apply_noise(clone, rand_noise) | ||||||
|  |                     clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) | ||||||
|  |                     clone.number_trained = copy.deepcopy(net.number_trained) | ||||||
|  |  | ||||||
|  |                     # Pre Training distances (after noise application of course) | ||||||
|  |                     clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||||
|  |                     MAE_pre = MAE(net_target_data, clone_pre_weights) | ||||||
|  |                     MSE_pre = MSE(net_target_data, clone_pre_weights) | ||||||
|  |                     MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||||
|  |  | ||||||
|  |                     # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. | ||||||
|  |                     for _ in range(self.epochs - 1): | ||||||
|  |                         for _ in range(self.ST_steps): | ||||||
|  |                             clone.self_train(1, self.log_step_size, self.net_learning_rate) | ||||||
|  |  | ||||||
|  |                     # Post Training distances for comparison | ||||||
|  |                     clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||||
|  |                     MAE_post = MAE(net_target_data, clone_post_weights) | ||||||
|  |                     MSE_post = MSE(net_target_data, clone_post_weights) | ||||||
|  |                     MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) | ||||||
|  |  | ||||||
|  |                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||||
|  |                     test_status(clone) | ||||||
|  |                     if is_identity_function(clone): | ||||||
|  |                         print(f"Clone {j} (of net_{i}) is fixpoint." | ||||||
|  |                               f"\nMSE({i},{j}): {MSE_post}" | ||||||
|  |                               f"\nMAE({i},{j}): {MAE_post}" | ||||||
|  |                               f"\nMIM({i},{j}): {MIM_post}\n") | ||||||
|  |                         self.nets.append(clone) | ||||||
|  |  | ||||||
|  |                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||||
|  |                                           clone.is_fixpoint] | ||||||
|  |  | ||||||
|  |                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||||
|  |                 for _ in range(self.epochs - 1): | ||||||
|  |                     for _ in range(self.ST_steps): | ||||||
|  |                         net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||||
|  |                 net_weights_after = net.create_target_weights(net.input_weight_matrix()) | ||||||
|  |                 print(f"Parent net's distance to original position." | ||||||
|  |                       f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||||
|  |                       f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||||
|  |                       f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||||
|  |  | ||||||
|  |         self.df = df | ||||||
|  |  | ||||||
|  |     def weights_evolution_3d_experiment(self): | ||||||
|  |         exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA" | ||||||
|  |         return plot_3d_soup(self.nets, exp_name, self.directory) | ||||||
|  |  | ||||||
|  |     def visualize_loss(self): | ||||||
|  |         for i in range(len(self.nets)): | ||||||
|  |             net_loss_history = self.nets[i].loss_history | ||||||
|  |             self.loss_history.append(net_loss_history) | ||||||
|  |         plot_loss(self.loss_history, self.directory) | ||||||
|  |  | ||||||
|  |     def save(self): | ||||||
|  |         pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb")) | ||||||
|  |         print(f"\nSaved experiment to {self.directory}.") | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == "__main__": | ||||||
|  |  | ||||||
|  |     NET_INPUT_SIZE = 4 | ||||||
|  |     NET_OUT_SIZE = 1 | ||||||
|  |  | ||||||
|  |     # Define number of runs & name: | ||||||
|  |     ST_runs = 1 | ||||||
|  |     ST_runs_name = "test-27" | ||||||
|  |     soup_ST_steps = 2500 | ||||||
|  |     soup_epochs = 2 | ||||||
|  |     soup_log_step_size = 10 | ||||||
|  |  | ||||||
|  |     # Define number of networks & their architecture | ||||||
|  |     nr_clones = 15 | ||||||
|  |     soup_population_size = 2 | ||||||
|  |     soup_net_hidden_size = 2 | ||||||
|  |     soup_net_learning_rate = 0.04 | ||||||
|  |     soup_attack_chance = 10 | ||||||
|  |     soup_name_hash = random.getrandbits(32) | ||||||
|  |  | ||||||
|  |     print(f"Running the Soup-Spawn experiment:") | ||||||
|  |     exp_list = [] | ||||||
|  |     for noise_factor in range(2, 5): | ||||||
|  |         exp = SoupSpawnExperiment( | ||||||
|  |             population_size=soup_population_size, | ||||||
|  |             log_step_size=soup_log_step_size, | ||||||
|  |             net_input_size=NET_INPUT_SIZE, | ||||||
|  |             net_hidden_size=soup_net_hidden_size, | ||||||
|  |             net_out_size=NET_OUT_SIZE, | ||||||
|  |             net_learning_rate=soup_net_learning_rate, | ||||||
|  |             epochs=soup_epochs, | ||||||
|  |             st_steps=soup_ST_steps, | ||||||
|  |             attack_chance=soup_attack_chance, | ||||||
|  |             nr_clones=nr_clones, | ||||||
|  |             noise=pow(10, -noise_factor), | ||||||
|  |             directory=Path('output') / 'soup_spawn_basin' / f'{soup_name_hash}' / f'10e-{noise_factor}' | ||||||
|  |         ) | ||||||
|  |         exp_list.append(exp) | ||||||
|  |  | ||||||
|  |     # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis | ||||||
|  |     df = pd.concat([exp.df for exp in exp_list]) | ||||||
|  |     sns.countplot(data=df, x="noise", hue="status_post") | ||||||
|  |     plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/fixpoint_status_countplot.png") | ||||||
|  |  | ||||||
|  |     # Catplot (either kind="point" or "box") that shows before-after training distances to parent | ||||||
|  |     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') | ||||||
|  |     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) | ||||||
|  |     plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/clone_distance_catplot.png") | ||||||
							
								
								
									
										266
									
								
								journal_soup_robustness.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										266
									
								
								journal_soup_robustness.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,266 @@ | |||||||
|  | import copy | ||||||
|  | import random | ||||||
|  | import os.path | ||||||
|  | import pickle | ||||||
|  | from pathlib import Path | ||||||
|  | from typing import Union | ||||||
|  |  | ||||||
|  | import numpy as np | ||||||
|  | import pandas as pd | ||||||
|  | import seaborn as sns | ||||||
|  | from tqdm import tqdm | ||||||
|  | from matplotlib import pyplot as plt | ||||||
|  | from torch.nn import functional as F | ||||||
|  | from tabulate import tabulate | ||||||
|  |  | ||||||
|  | from experiments.helpers import check_folder, summary_fixpoint_percentage, summary_fixpoint_experiment | ||||||
|  | from functionalities_test import test_for_fixpoints, is_zero_fixpoint, is_divergent, is_identity_function | ||||||
|  | from network import Net | ||||||
|  | from visualization import plot_loss, bar_chart_fixpoints, plot_3d_soup, line_chart_fixpoints | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def prng(): | ||||||
|  |     return random.random() | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SoupRobustnessExperiment: | ||||||
|  |  | ||||||
|  |     @staticmethod | ||||||
|  |     def apply_noise(network, noise: int): | ||||||
|  |         """ Changing the weights of a network to values + noise """ | ||||||
|  |         for layer_id, layer_name in enumerate(network.state_dict()): | ||||||
|  |             for line_id, line_values in enumerate(network.state_dict()[layer_name]): | ||||||
|  |                 for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): | ||||||
|  |                     # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||||
|  |                     if prng() < 0.5: | ||||||
|  |                         network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||||
|  |                     else: | ||||||
|  |                         network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise | ||||||
|  |  | ||||||
|  |         return network | ||||||
|  |  | ||||||
|  |     def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance, | ||||||
|  |                  train_nets, ST_steps, epochs, log_step_size, directory: Union[str, Path]): | ||||||
|  |         super().__init__() | ||||||
|  |         self.population_size = population_size | ||||||
|  |  | ||||||
|  |         self.net_input_size = net_i_size | ||||||
|  |         self.net_hidden_size = net_h_size | ||||||
|  |         self.net_out_size = net_o_size | ||||||
|  |         self.net_learning_rate = learning_rate | ||||||
|  |         self.attack_chance = attack_chance | ||||||
|  |         self.train_nets = train_nets | ||||||
|  |         # self.SA_steps = SA_steps | ||||||
|  |         self.ST_steps = ST_steps | ||||||
|  |         self.epochs = epochs | ||||||
|  |         self.log_step_size = log_step_size | ||||||
|  |  | ||||||
|  |         self.loss_history = [] | ||||||
|  |  | ||||||
|  |         self.fixpoint_counters = { | ||||||
|  |             "identity_func": 0, | ||||||
|  |             "divergent": 0, | ||||||
|  |             "fix_zero": 0, | ||||||
|  |             "fix_weak": 0, | ||||||
|  |             "fix_sec": 0, | ||||||
|  |             "other_func": 0 | ||||||
|  |         } | ||||||
|  |         # <self.fixpoint_counters_history> is used for keeping track of the amount of fixpoints in % | ||||||
|  |         self.fixpoint_counters_history = [] | ||||||
|  |         self.id_functions = [] | ||||||
|  |  | ||||||
|  |         self.directory = Path(directory) | ||||||
|  |         self.directory.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
|  |         self.population = [] | ||||||
|  |         self.populate_environment() | ||||||
|  |  | ||||||
|  |         self.evolve() | ||||||
|  |         self.fixpoint_percentage() | ||||||
|  |         self.weights_evolution_3d_experiment() | ||||||
|  |         self.count_fixpoints() | ||||||
|  |         self.visualize_loss() | ||||||
|  |  | ||||||
|  |         self.time_to_vergence, self.time_as_fixpoint = self.test_robustness() | ||||||
|  |  | ||||||
|  |     def populate_environment(self): | ||||||
|  |         loop_population_size = tqdm(range(self.population_size)) | ||||||
|  |         for i in tqdm(range(self.population_size)): | ||||||
|  |             loop_population_size.set_description("Populating soup experiment %s" % i) | ||||||
|  |  | ||||||
|  |             net_name = f"soup_network_{i}" | ||||||
|  |             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) | ||||||
|  |             self.population.append(net) | ||||||
|  |  | ||||||
|  |     def evolve(self): | ||||||
|  |         """ Evolving consists of attacking & self-training. """ | ||||||
|  |  | ||||||
|  |         loop_epochs = tqdm(range(self.epochs)) | ||||||
|  |         for i in loop_epochs: | ||||||
|  |             loop_epochs.set_description("Evolving soup %s" % i) | ||||||
|  |  | ||||||
|  |             # A network attacking another network with a given percentage | ||||||
|  |             if random.randint(1, 100) <= self.attack_chance: | ||||||
|  |                 random_net1, random_net2 = random.sample(range(self.population_size), 2) | ||||||
|  |                 random_net1 = self.population[random_net1] | ||||||
|  |                 random_net2 = self.population[random_net2] | ||||||
|  |                 print(f"\n Attack: {random_net1.name} -> {random_net2.name}") | ||||||
|  |                 random_net1.attack(random_net2) | ||||||
|  |  | ||||||
|  |             #  Self-training each network in the population | ||||||
|  |             for j in range(self.population_size): | ||||||
|  |                 net = self.population[j] | ||||||
|  |  | ||||||
|  |                 for _ in range(self.ST_steps): | ||||||
|  |                     net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||||
|  |  | ||||||
|  |             # Testing for fixpoints after each batch of ST steps to see relevant data | ||||||
|  |             if i % self.ST_steps == 0: | ||||||
|  |                 test_for_fixpoints(self.fixpoint_counters, self.population) | ||||||
|  |                 fixpoints_percentage = round(self.fixpoint_counters["identity_func"] / self.population_size, 1) | ||||||
|  |                 self.fixpoint_counters_history.append(fixpoints_percentage) | ||||||
|  |  | ||||||
|  |             # Resetting the fixpoint counter. Last iteration not to be reset - | ||||||
|  |             #  it is important for the bar_chart_fixpoints(). | ||||||
|  |             if i < self.epochs: | ||||||
|  |                 self.reset_fixpoint_counters() | ||||||
|  |  | ||||||
|  |     def test_robustness(self, print_it=True, noise_levels=10, seeds=10): | ||||||
|  |         # assert (len(self.id_functions) == 1 and seeds > 1) or (len(self.id_functions) > 1 and seeds == 1) | ||||||
|  |         is_synthetic = True if len(self.id_functions) > 1 and seeds == 1 else False | ||||||
|  |         avg_time_to_vergence = [[0 for _ in range(noise_levels)] for _ in | ||||||
|  |                                 range(seeds if is_synthetic else len(self.id_functions))] | ||||||
|  |         avg_time_as_fixpoint = [[0 for _ in range(noise_levels)] for _ in | ||||||
|  |                                 range(seeds if is_synthetic else len(self.id_functions))] | ||||||
|  |         row_headers = [] | ||||||
|  |         data_pos = 0 | ||||||
|  |         # This checks wether to use synthetic setting with multiple seeds | ||||||
|  |         #   or multi network settings with a singlee seed | ||||||
|  |  | ||||||
|  |         df = pd.DataFrame(columns=['seed', 'noise_level', 'application_step', 'absolute_loss']) | ||||||
|  |         for i, fixpoint in enumerate(self.id_functions):  # 1 / n | ||||||
|  |             row_headers.append(fixpoint.name) | ||||||
|  |             for seed in range(seeds):  # n / 1 | ||||||
|  |                 for noise_level in range(noise_levels): | ||||||
|  |                     self_application_steps = 1 | ||||||
|  |                     clone = Net(fixpoint.input_size, fixpoint.hidden_size, fixpoint.out_size, | ||||||
|  |                                 f"{fixpoint.name}_clone_noise10e-{noise_level}") | ||||||
|  |                     clone.load_state_dict(copy.deepcopy(fixpoint.state_dict())) | ||||||
|  |                     rand_noise = prng() * pow(10, -noise_level)  # n / 1 | ||||||
|  |                     clone = self.apply_noise(clone, rand_noise) | ||||||
|  |  | ||||||
|  |                     while not is_zero_fixpoint(clone) and not is_divergent(clone): | ||||||
|  |                         if is_identity_function(clone): | ||||||
|  |                             avg_time_as_fixpoint[i][noise_level] += 1 | ||||||
|  |  | ||||||
|  |                         # -> before | ||||||
|  |                         clone_weight_pre_application = clone.input_weight_matrix() | ||||||
|  |                         target_data_pre_application = clone.create_target_weights(clone_weight_pre_application) | ||||||
|  |  | ||||||
|  |                         clone.self_application(1, self.log_step_size) | ||||||
|  |                         avg_time_to_vergence[i][noise_level] += 1 | ||||||
|  |                         # -> after | ||||||
|  |                         clone_weight_post_application = clone.input_weight_matrix() | ||||||
|  |                         target_data_post_application = clone.create_target_weights(clone_weight_post_application) | ||||||
|  |  | ||||||
|  |                         absolute_loss = F.l1_loss(target_data_pre_application, target_data_post_application).item() | ||||||
|  |  | ||||||
|  |                         setting = i if is_synthetic else seed | ||||||
|  |  | ||||||
|  |                         df.loc[data_pos] = [setting, noise_level, self_application_steps, absolute_loss] | ||||||
|  |                         data_pos += 1 | ||||||
|  |                         self_application_steps += 1 | ||||||
|  |  | ||||||
|  |         # calculate the average: | ||||||
|  |         df = df.replace([np.inf, -np.inf], np.nan) | ||||||
|  |         df = df.dropna() | ||||||
|  |         # sns.set(rc={'figure.figsize': (10, 50)}) | ||||||
|  |         bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box', | ||||||
|  |                          col='noise_level', col_wrap=3, showfliers=False) | ||||||
|  |         directory = Path('output') / 'robustness' | ||||||
|  |         filename = f"absolute_loss_perapplication_boxplot_grid.png" | ||||||
|  |         filepath = directory / filename | ||||||
|  |  | ||||||
|  |         plt.savefig(str(filepath)) | ||||||
|  |  | ||||||
|  |         if print_it: | ||||||
|  |             col_headers = [str(f"10e-{d}") for d in range(noise_levels)] | ||||||
|  |  | ||||||
|  |             print(f"\nAppplications steps until divergence / zero: ") | ||||||
|  |             print(tabulate(avg_time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||||
|  |  | ||||||
|  |             print(f"\nTime as fixpoint: ") | ||||||
|  |             print(tabulate(avg_time_as_fixpoint, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||||
|  |  | ||||||
|  |         return avg_time_as_fixpoint, avg_time_to_vergence | ||||||
|  |  | ||||||
|  |     def weights_evolution_3d_experiment(self): | ||||||
|  |         exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs" | ||||||
|  |         return plot_3d_soup(self.population, exp_name, self.directory) | ||||||
|  |  | ||||||
|  |     def count_fixpoints(self): | ||||||
|  |         self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.population) | ||||||
|  |         exp_details = f"Evolution steps: {self.epochs} epochs" | ||||||
|  |         bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory, self.net_learning_rate, | ||||||
|  |                             exp_details) | ||||||
|  |  | ||||||
|  |     def fixpoint_percentage(self): | ||||||
|  |         runs = self.epochs / self.ST_steps | ||||||
|  |         SA_steps = None | ||||||
|  |         line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory, | ||||||
|  |                              self.population_size) | ||||||
|  |  | ||||||
|  |     def visualize_loss(self): | ||||||
|  |         for i in range(len(self.population)): | ||||||
|  |             net_loss_history = self.population[i].loss_history | ||||||
|  |             self.loss_history.append(net_loss_history) | ||||||
|  |  | ||||||
|  |         plot_loss(self.loss_history, self.directory) | ||||||
|  |  | ||||||
|  |     def reset_fixpoint_counters(self): | ||||||
|  |         self.fixpoint_counters = { | ||||||
|  |             "identity_func": 0, | ||||||
|  |             "divergent": 0, | ||||||
|  |             "fix_zero": 0, | ||||||
|  |             "fix_weak": 0, | ||||||
|  |             "fix_sec": 0, | ||||||
|  |             "other_func": 0 | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == "__main__": | ||||||
|  |     NET_INPUT_SIZE = 4 | ||||||
|  |     NET_OUT_SIZE = 1 | ||||||
|  |  | ||||||
|  |     soup_epochs = 100 | ||||||
|  |     soup_log_step_size = 5 | ||||||
|  |     soup_ST_steps = 20 | ||||||
|  |     # soup_SA_steps = 10 | ||||||
|  |  | ||||||
|  |     # Define number of networks & their architecture | ||||||
|  |     soup_population_size = 20 | ||||||
|  |     soup_net_hidden_size = 2 | ||||||
|  |     soup_net_learning_rate = 0.04 | ||||||
|  |  | ||||||
|  |     # soup_attack_chance in % | ||||||
|  |     soup_attack_chance = 10 | ||||||
|  |  | ||||||
|  |     # not used yet: soup_train_nets has 3 possible values "no", "before_SA", "after_SA". | ||||||
|  |     soup_train_nets = "no" | ||||||
|  |     soup_name_hash = random.getrandbits(32) | ||||||
|  |     soup_synthetic = True | ||||||
|  |  | ||||||
|  |     print(f"Running the robustness comparison experiment:") | ||||||
|  |     SoupRobustnessExperiment( | ||||||
|  |         population_size=soup_population_size, | ||||||
|  |         net_i_size=NET_INPUT_SIZE, | ||||||
|  |         net_h_size=soup_net_hidden_size, | ||||||
|  |         net_o_size=NET_OUT_SIZE, | ||||||
|  |         learning_rate=soup_net_learning_rate, | ||||||
|  |         attack_chance=soup_attack_chance, | ||||||
|  |         train_nets=soup_train_nets, | ||||||
|  |         ST_steps=soup_ST_steps, | ||||||
|  |         epochs=soup_epochs, | ||||||
|  |         log_step_size=soup_log_step_size, | ||||||
|  |         directory=Path('output') / 'robustness' / f'{soup_name_hash}' | ||||||
|  |     ) | ||||||
		Reference in New Issue
	
	Block a user
	 ru43zex
					ru43zex