first take on making soup
This commit is contained in:
@ -76,3 +76,7 @@ class FixpointExperiment(Experiment):
|
||||
self.counters['fix_sec'] += 1
|
||||
else:
|
||||
self.counters['other'] += 1
|
||||
|
||||
|
||||
class SoupExperiment(Experiment):
|
||||
pass
|
||||
|
@ -92,6 +92,14 @@ class NeuralNetwork:
|
||||
self.attack(self)
|
||||
return self
|
||||
|
||||
def meet(self, other_network):
|
||||
new_other_network = copy.deepcopy(other_network)
|
||||
return self.attack(new_other_network)
|
||||
|
||||
def self_meet(self, iterations=1):
|
||||
new_me = copy.deepcopy(self)
|
||||
return new_me.self_attack(iterations)
|
||||
|
||||
def is_diverged(self):
|
||||
return are_weights_diverged(self.get_weights())
|
||||
|
||||
@ -300,13 +308,12 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if True:
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
# net = WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear')
|
||||
net = AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False)
|
||||
# net = RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
|
||||
# net.print_weights()
|
||||
exp.run_net(net, 100)
|
||||
exp.log(exp.counters)
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
# net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear')
|
||||
net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random, print_all_weight_updates=False)
|
||||
# net = RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear').with_params(print_all_weight_updates=True)
|
||||
# net.print_weights()
|
||||
exp.run_net(net, 100)
|
||||
exp.log(exp.counters)
|
||||
|
||||
|
61
code/soup.py
Normal file
61
code/soup.py
Normal file
@ -0,0 +1,61 @@
|
||||
import random
|
||||
import copy
|
||||
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
class Soup:
|
||||
|
||||
def __init__(self, size, generator, **kwargs):
|
||||
self.size = size
|
||||
self.generator = generator
|
||||
self.particles = []
|
||||
self.params = dict(meeting_rate=0.1)
|
||||
self.params.update(kwargs)
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
self.params.update(kwargs)
|
||||
return self
|
||||
|
||||
def seed(self):
|
||||
self.particles = []
|
||||
for _ in range(self.size):
|
||||
self.particles += [self.generator()]
|
||||
return self
|
||||
|
||||
def evolve(self, iterations=1):
|
||||
for _ in range(iterations):
|
||||
for particle_id,particle in enumerate(self.particles):
|
||||
if prng() < self.params.get('meeting_rate'):
|
||||
other_particle_id = int(prng() * len(self.particles))
|
||||
other_particle = self.particles[other_particle_id]
|
||||
particle.attack(other_particle)
|
||||
|
||||
def count(self):
|
||||
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||
for particle in self.particles:
|
||||
if particle.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif particle.is_fixpoint():
|
||||
if particle.is_zero():
|
||||
counters['fix_zero'] += 1
|
||||
else:
|
||||
counters['fix_other'] += 1
|
||||
elif particle.is_fixpoint(2):
|
||||
counters['fix_sec'] += 1
|
||||
else:
|
||||
counters['other'] += 1
|
||||
return counters
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
with SoupExperiment() as exp:
|
||||
for run_id in tqdm(range(1)):
|
||||
net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='linear').with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
soup = Soup(100, net_generator)
|
||||
soup.seed()
|
||||
soup.evolve(100)
|
||||
exp.log(soup.count())
|
Reference in New Issue
Block a user