point_to_primitive/main_inference.py
2020-06-23 14:37:34 +02:00

75 lines
2.8 KiB
Python

from pathlib import Path
import torch
from torch_geometric.data import Data
from tqdm import tqdm
from torch.utils.data import DataLoader
# Dataset and Dataloaders
# =============================================================================
# Transforms
from ml_lib.point_toolset.point_io import BatchToData
from ml_lib.utils.model_io import SavedLightningModels
# Datasets
from datasets.shapenet import ShapeNetPartSegDataset
from utils.project_config import ThisConfig
from utils.project_settings import GlobalVar
def prepare_dataloader(config_obj):
dataset = ShapeNetPartSegDataset(config_obj.data.root, mode=GlobalVar.data_split.test,
setting=GlobalVar.settings[config_obj.model.type])
# noinspection PyTypeChecker
return DataLoader(dataset, batch_size=config_obj.train.batch_size,
num_workers=config_obj.data.worker, shuffle=False)
def restore_logger_and_model(log_dir):
model = SavedLightningModels.load_checkpoint(models_root_path=log_dir, n=-1)
model = model.restore()
if torch.cuda.is_available():
model.cuda()
else:
model.cpu()
return model
if __name__ == '__main__':
outpath = Path('output')
model_path = Path('/home/steffen/projects/point_to_primitive/output/P2G/PG_9f7ac027e3359fa5f5e5bcd32044a167/version_69')
config_filename = 'config.ini'
inference_out = 'manual_test_out.csv'
config = ThisConfig()
config.read_file((Path(model_path) / config_filename).open('r'))
test_dataloader = prepare_dataloader(config)
loaded_model = restore_logger_and_model(model_path)
loaded_model.eval()
with (model_path / inference_out).open(mode='w') as outfile:
outfile.write(f'{",".join(FullCloudsDataset.headers[:6])},class,cluster\n')
batch_to_data = BatchToData()
for batch_pos_x_n_y_c in tqdm(test_dataloader, total=len(test_dataloader)):
data = batch_to_data(*batch_pos_x_n_y_c) if not isinstance(batch_pos_x_n_y_c, Data) else batch_pos_x_n_y_c
y = loaded_model(data.to(device='cuda' if torch.cuda.is_available() else 'cpu'))
y_primary = torch.argmax(y.main_out, dim=-1).squeeze().cpu().numpy()
y_sec = -1
try:
y_sec = torch.argmax(y.grid_out, dim=-1).squeeze().cpu().numpy()
except AttributeError:
pass
try:
y_sec = torch.argmax(y.prim_out, dim=-1).squeeze().cpu().numpy()
except AttributeError:
pass
for row in range(data.num_nodes):
outfile.write(f'{",".join(map(str, data.pos[row].tolist()))},' +
f'{",".join(map(str, data.x[row].tolist()))},' +
f'{y_primary[row]},{y_sec[row]}\n')
print('Done')