point_to_primitive/datasets/full_pointclouds.py

46 lines
1.6 KiB
Python

import pickle
from collections import defaultdict
from pathlib import Path
import numpy as np
from torch.utils.data import Dataset
from ._point_dataset import _Point_Dataset
class FullCloudsDataset(_Point_Dataset):
setting = 'pc'
def __init__(self, *args, **kwargs):
super(FullCloudsDataset, self).__init__(*args, **kwargs)
def __len__(self):
return len(self._files)
def __getitem__(self, item):
raw_file_path = self._files[item]
processed_file_path = self.processed / raw_file_path.name.replace(self.raw_ext, self.processed_ext)
if not self.load_preprocessed:
processed_file_path.unlink(missing_ok=True)
if not processed_file_path.exists():
pointcloud = defaultdict(list)
with raw_file_path.open('r') as raw_file:
for row in raw_file:
values = [float(x) for x in row.split(' ')]
for header, value in zip(self.headers, values):
pointcloud[header].append(value)
for key in pointcloud.keys():
pointcloud[key] = np.asarray(pointcloud[key])
with processed_file_path.open('wb') as processed_file:
pickle.dump(pointcloud, processed_file)
with processed_file_path.open('rb') as processed_file:
pointcloud = pickle.load(processed_file)
points = np.stack(pointcloud['x'], pointcloud['y'], pointcloud['z'])
normal = np.stack(pointcloud['xn'], pointcloud['yn'], pointcloud['zn'])
label = points['label']
samples = self.sampling(points)
return points[samples], normal[samples], label[samples]