point_to_primitive/models/point_net_2_prim_clusters.py
2020-06-07 16:47:52 +02:00

60 lines
2.2 KiB
Python

from argparse import Namespace
import torch
from torch import nn
from datasets.full_pointclouds import FullCloudsDataset
from models._point_net_2 import _PointNetCore
from utils.module_mixins import BaseValMixin, BaseTrainMixin, BaseOptimizerMixin, BaseDataloadersMixin, DatasetMixin
from utils.project_config import GlobalVar
class PointNet2PrimClusters(BaseValMixin,
BaseTrainMixin,
BaseOptimizerMixin,
DatasetMixin,
BaseDataloadersMixin,
_PointNetCore
):
def __init__(self, hparams):
super(PointNet2PrimClusters, self).__init__(hparams=hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset(FullCloudsDataset, setting='prim')
# Model Paramters
# =============================================================================
# Additional parameters
# Modules
self.point_lin = torch.nn.Linear(128, len(GlobalVar.classes))
self.prim_lin = torch.nn.Linear(128, len(GlobalVar.prims))
# Utility
self.log_softmax = nn.LogSoftmax(dim=-1)
def forward(self, data, **kwargs):
"""
data: a batch of input torch_geometric.data.Data type
- torch_geometric.data.Data, as torch_geometric batch input:
data.x: (batch_size * ~num_points, C), batch nodes/points feature,
~num_points means each sample can have different number of points/nodes
data.pos: (batch_size * ~num_points, 3)
data.batch: (batch_size * ~num_points,), a column vector of graph/pointcloud
idendifiers for all nodes of all graphs/pointclouds in the batch. See
pytorch_gemometric documentation for more information
"""
sa0_out = (data.x, data.pos, data.batch)
tensor = super(PointNet2PrimClusters, self).forward(sa0_out)
point_tensor = self.point_lin(tensor)
point_tensor = self.log_softmax(point_tensor)
prim_tensor = self.prim_lin(tensor)
prim_tensor = self.log_softmax(prim_tensor)
return Namespace(main_out=point_tensor, prim_out=prim_tensor)