from abc import ABC import torch from torch import nn from ml_lib.modules.geometric_blocks import SAModule, GlobalSAModule, MLP, FPModule from ml_lib.modules.util import LightningBaseModule, F_x from ml_lib.point_toolset.point_io import BatchToData class _PointNetCore(LightningBaseModule, ABC): def __init__(self, hparams): super(_PointNetCore, self).__init__(hparams=hparams) # Transforms # ============================================================================= self.batch_to_data = BatchToData(transforms=None) # Model Paramters # ============================================================================= # Additional parameters self.cord_dims = 6 if self.params.normals_as_cords else 3 # Modules self.sa1_module = SAModule(0.2, 0.2, MLP([3 + 3, 64, 64, 128])) self.sa2_module = SAModule(0.25, 0.4, MLP([128 + self.cord_dims, 128, 128, 256])) self.sa3_module = GlobalSAModule(MLP([256 + self.cord_dims, 256, 512, 1024]), channels=self.cord_dims) self.fp3_module = FPModule(1, MLP([1024 + 256, 256, 256])) self.fp2_module = FPModule(3, MLP([256 + 128, 256, 128])) self.fp1_module = FPModule(3, MLP([128 + (3 if not self.params.normals_as_cords else 0), 128, 128, 128])) self.lin1 = torch.nn.Linear(128, 128) self.lin2 = torch.nn.Linear(128, 128) # Utility self.dropout = nn.Dropout(self.params.dropout) if self.params.dropout else F_x(None) self.activation = self.params.activation() def forward(self, sa0_out, **kwargs): """ sa0_out: a batch of input torch_geometric.data.Data type - torch_geometric.data.Data, as torch_geometric batch input: data.x: (batch_size * ~num_points, C), batch nodes/points feature, ~num_points means each sample can have different number of points/nodes data.pos: (batch_size * ~num_points, 3) data.batch: (batch_size * ~num_points,), a column vector of graph/pointcloud idendifiers for all nodes of all graphs/pointclouds in the batch. See pytorch_gemometric documentation for more information """ sa1_out = self.sa1_module(*sa0_out) sa2_out = self.sa2_module(*sa1_out) sa3_out = self.sa3_module(*sa2_out) fp3_out = self.fp3_module(*sa3_out, *sa2_out) fp2_out = self.fp2_module(*fp3_out, *sa1_out) tensor, _, _ = self.fp1_module(*fp2_out, *sa0_out) tensor = tensor.float() tensor = self.activation(tensor) tensor = self.lin1(tensor) tensor = self.dropout(tensor) tensor = self.lin2(tensor) tensor = self.dropout(tensor) return tensor