pointnet2 working - TODO: Eval!
This commit is contained in:
parent
e04ef2f8b9
commit
ba7c0280ae
@ -15,15 +15,14 @@ main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="
|
||||
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
||||
|
||||
# Project
|
||||
main_arg_parser.add_argument("--project_name", type=str, default='traj-gen', help="")
|
||||
main_arg_parser.add_argument("--project_name", type=str, default='point-to-primitive', help="")
|
||||
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
|
||||
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
|
||||
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_API_TOKEN'), help="")
|
||||
|
||||
# Data Parameters
|
||||
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
||||
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
|
||||
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||
main_arg_parser.add_argument("--data_additional_resource_root", type=str, default='res/resource/root', help="")
|
||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||
|
||||
# Transformations
|
||||
@ -36,10 +35,11 @@ main_arg_parser.add_argument("--train_version", type=strtobool, required=False,
|
||||
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
|
||||
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
|
||||
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
|
||||
main_arg_parser.add_argument("--train_weight_decay", type=float, default=1e-8, help="")
|
||||
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||
|
||||
# Model
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="CNNRouteGenerator", help="")
|
||||
main_arg_parser.add_argument("--model_type", type=str, default="PN2", help="")
|
||||
|
||||
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
|
||||
|
@ -1,17 +1,27 @@
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
|
||||
from abc import ABC
|
||||
from pathlib import Path
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from ml_lib.point_toolset.sampling import FarthestpointSampling
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class _Point_Dataset(ABC, Dataset):
|
||||
|
||||
@property
|
||||
def sample_shape(self):
|
||||
# FixMe: This does not work when more then x/y tuples are returned
|
||||
return self[0][0].shape
|
||||
|
||||
@property
|
||||
def setting(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
headers = ['x', 'y', 'z', 'nx', 'ny', 'nz', 'label', 'cl_idx']
|
||||
headers = ['x', 'y', 'z', 'xn', 'yn', 'zn', 'label', 'cl_idx']
|
||||
|
||||
def __init__(self, root=Path('data'), sampling_k=2048, transforms=None, load_preprocessed=True, *args, **kwargs):
|
||||
super(_Point_Dataset, self).__init__()
|
||||
@ -21,13 +31,32 @@ class _Point_Dataset(ABC, Dataset):
|
||||
self.sampling_k = sampling_k
|
||||
self.sampling = FarthestpointSampling(K=self.sampling_k)
|
||||
self.root = Path(root)
|
||||
self.raw = root / 'raw'
|
||||
self.raw = self.root / 'raw'
|
||||
self.processed_ext = '.pik'
|
||||
self.raw_ext = '.xyz'
|
||||
self.processed = root / self.setting
|
||||
self.processed = self.root / self.setting
|
||||
self.processed.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self._files = list(self.raw.glob(f'*{self.setting}*'))
|
||||
|
||||
def _read_or_load(self, item):
|
||||
raw_file_path = self._files[item]
|
||||
processed_file_path = self.processed / raw_file_path.name.replace(self.raw_ext, self.processed_ext)
|
||||
|
||||
if not self.load_preprocessed:
|
||||
processed_file_path.unlink(missing_ok=True)
|
||||
if not processed_file_path.exists():
|
||||
pointcloud = defaultdict(list)
|
||||
with raw_file_path.open('r') as raw_file:
|
||||
for row in raw_file:
|
||||
values = [float(x) for x in row.strip().split(' ')]
|
||||
for header, value in zip(self.headers, values):
|
||||
pointcloud[header].append(value)
|
||||
for key in pointcloud.keys():
|
||||
pointcloud[key] = np.asarray(pointcloud[key])
|
||||
with processed_file_path.open('wb') as processed_file:
|
||||
pickle.dump(pointcloud, processed_file)
|
||||
return processed_file_path
|
||||
|
||||
def __len__(self):
|
||||
raise NotImplementedError
|
||||
|
@ -1,9 +1,7 @@
|
||||
import pickle
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from ._point_dataset import _Point_Dataset
|
||||
|
||||
@ -19,27 +17,17 @@ class FullCloudsDataset(_Point_Dataset):
|
||||
return len(self._files)
|
||||
|
||||
def __getitem__(self, item):
|
||||
raw_file_path = self._files[item]
|
||||
processed_file_path = self.processed / raw_file_path.name.replace(self.raw_ext, self.processed_ext)
|
||||
if not self.load_preprocessed:
|
||||
processed_file_path.unlink(missing_ok=True)
|
||||
if not processed_file_path.exists():
|
||||
pointcloud = defaultdict(list)
|
||||
with raw_file_path.open('r') as raw_file:
|
||||
for row in raw_file:
|
||||
values = [float(x) for x in row.split(' ')]
|
||||
for header, value in zip(self.headers, values):
|
||||
pointcloud[header].append(value)
|
||||
for key in pointcloud.keys():
|
||||
pointcloud[key] = np.asarray(pointcloud[key])
|
||||
with processed_file_path.open('wb') as processed_file:
|
||||
pickle.dump(pointcloud, processed_file)
|
||||
processed_file_path = self._read_or_load(item)
|
||||
|
||||
with processed_file_path.open('rb') as processed_file:
|
||||
pointcloud = pickle.load(processed_file)
|
||||
points = np.stack(pointcloud['x'], pointcloud['y'], pointcloud['z'])
|
||||
normal = np.stack(pointcloud['xn'], pointcloud['yn'], pointcloud['zn'])
|
||||
label = points['label']
|
||||
samples = self.sampling(points)
|
||||
points = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z'],
|
||||
pointcloud['xn'], pointcloud['yn'], pointcloud['zn']
|
||||
),
|
||||
axis=-1)
|
||||
# When yopu want to return points and normal seperately
|
||||
# normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
|
||||
label = pointcloud['label']
|
||||
sample_idxs = self.sampling(points)
|
||||
|
||||
return points[samples], normal[samples], label[samples]
|
||||
return points[sample_idxs].astype(np.float), label[sample_idxs].astype(np.int)
|
||||
|
@ -1,6 +1,32 @@
|
||||
from torch.utils.data import Dataset
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
from ._point_dataset import _Point_Dataset
|
||||
|
||||
|
||||
class TemplateDataset(_Point_Dataset):
|
||||
class FullCloudsDataset(_Point_Dataset):
|
||||
|
||||
setting = 'grid'
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TemplateDataset, self).__init__()
|
||||
super(FullCloudsDataset, self).__init__(*args, **kwargs)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._files)
|
||||
|
||||
def __getitem__(self, item):
|
||||
processed_file_path = self._read_or_load(item)
|
||||
|
||||
with processed_file_path.open('rb') as processed_file:
|
||||
pointcloud = pickle.load(processed_file)
|
||||
points = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z'],
|
||||
pointcloud['xn'], pointcloud['yn'], pointcloud['zn']
|
||||
),
|
||||
axis=-1)
|
||||
|
||||
# When yopu want to return points and normal seperately
|
||||
# normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
|
||||
label = np.stack((pointcloud['label'], pointcloud['cl_idx']))
|
||||
sample_idxs = self.sampling(points)
|
||||
|
||||
return points[sample_idxs], label[sample_idxs]
|
@ -1,8 +1,32 @@
|
||||
from torch.utils.data import Dataset
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
from ._point_dataset import _Point_Dataset
|
||||
|
||||
|
||||
class TemplateDataset(_Point_Dataset):
|
||||
class FullCloudsDataset(_Point_Dataset):
|
||||
|
||||
setting = 'prim'
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TemplateDataset, self).__init__()
|
||||
super(FullCloudsDataset, self).__init__(*args, **kwargs)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._files)
|
||||
|
||||
def __getitem__(self, item):
|
||||
processed_file_path = self._read_or_load(item)
|
||||
|
||||
with processed_file_path.open('rb') as processed_file:
|
||||
pointcloud = pickle.load(processed_file)
|
||||
points = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z'],
|
||||
pointcloud['xn'], pointcloud['yn'], pointcloud['zn']
|
||||
),
|
||||
axis=-1)
|
||||
|
||||
# When yopu want to return points and normal seperately
|
||||
# normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
|
||||
label = np.stack((pointcloud['label'], pointcloud['cl_idx']))
|
||||
sample_idxs = self.sampling(points)
|
||||
|
||||
return points[sample_idxs], label[sample_idxs]
|
@ -10,4 +10,3 @@ class TemplateDataset(_Point_Dataset):
|
||||
|
||||
def __getitem__(self, item):
|
||||
return item
|
||||
|
||||
|
14
main.py
14
main.py
@ -5,12 +5,11 @@ import warnings
|
||||
|
||||
import torch
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint # , EarlyStopping
|
||||
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from ml_lib.utils.config import Config
|
||||
from ml_lib.utils.logging import Logger
|
||||
from ml_lib.utils.model_io import SavedLightningModels
|
||||
from utils.project_config import ThisConfig
|
||||
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
@ -33,11 +32,13 @@ def run_lightning_loop(config_obj):
|
||||
# =============================================================================
|
||||
# Early Stopping
|
||||
# TODO: For This to work, one must set a validation step and End Eval and Score
|
||||
"""
|
||||
early_stopping_callback = EarlyStopping(
|
||||
monitor='val_loss',
|
||||
min_delta=0.0,
|
||||
patience=0,
|
||||
)
|
||||
"""
|
||||
|
||||
# Model
|
||||
# =============================================================================
|
||||
@ -76,6 +77,9 @@ def run_lightning_loop(config_obj):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from ._parameters import args
|
||||
config = Config.read_namespace(args)
|
||||
from _parameters import args
|
||||
from ml_lib.utils.tools import fix_all_random_seeds
|
||||
|
||||
config = ThisConfig.read_namespace(args)
|
||||
fix_all_random_seeds(config)
|
||||
trained_model = run_lightning_loop(config)
|
||||
|
1
models/__init__.py
Normal file
1
models/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .point_net_2 import PointNet2
|
103
models/point_net_2.py
Normal file
103
models/point_net_2.py
Normal file
@ -0,0 +1,103 @@
|
||||
from argparse import Namespace
|
||||
|
||||
import torch
|
||||
from torch.optim import Adam
|
||||
from torch import nn
|
||||
from torch_geometric.data import Data
|
||||
|
||||
from datasets.full_pointclouds import FullCloudsDataset
|
||||
from ml_lib.modules.geometric_blocks import SAModule, GlobalSAModule, MLP
|
||||
from ml_lib.modules.util import LightningBaseModule, F_x
|
||||
|
||||
from utils.module_mixins import BaseValMixin, BaseTrainMixin, BaseOptimizerMixin, BaseDataloadersMixin, DatasetMixin
|
||||
|
||||
|
||||
class PointNet2(BaseValMixin,
|
||||
BaseTrainMixin,
|
||||
BaseOptimizerMixin,
|
||||
DatasetMixin,
|
||||
BaseDataloadersMixin,
|
||||
LightningBaseModule
|
||||
):
|
||||
|
||||
def __init__(self, hparams):
|
||||
super(PointNet2, self).__init__(hparams=hparams)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
self.dataset = self.build_dataset(FullCloudsDataset)
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
|
||||
self.in_shape = self.dataset.train_dataset.sample_shape
|
||||
self.channels = self.in_shape[-1]
|
||||
|
||||
# Modules
|
||||
self.sa1_module = SAModule(0.5, 0.2, MLP([self.channels, 64, 64, 128]))
|
||||
self.sa2_module = SAModule(0.25, 0.4, MLP([128 + self.channels, 128, 128, 256]))
|
||||
self.sa3_module = GlobalSAModule(MLP([256 + self.channels, 256, 512, 1024]))
|
||||
|
||||
self.lin1 = nn.Linear(1024, 512)
|
||||
self.lin2 = nn.Linear(512, 256)
|
||||
self.lin3 = nn.Linear(256, 10)
|
||||
|
||||
# Utility
|
||||
self.dropout = nn.Dropout(self.params.dropout) if self.params.dropout else F_x(None)
|
||||
self.activation = self.params.activation()
|
||||
self.log_softmax = nn.LogSoftmax(dim=-1)
|
||||
|
||||
def configure_optimizers(self):
|
||||
return Adam(self.parameters(), lr=self.params.lr, weight_decay=self.params.weight_decay)
|
||||
|
||||
def forward(self, data, **kwargs):
|
||||
"""
|
||||
data: a batch of input, torch.Tensor or torch_geometric.data.Data type
|
||||
- torch.Tensor: (batch_size, 3, num_points), as common batch input
|
||||
|
||||
- torch_geometric.data.Data, as torch_geometric batch input:
|
||||
data.x: (batch_size * ~num_points, C), batch nodes/points feature,
|
||||
~num_points means each sample can have different number of points/nodes
|
||||
|
||||
data.pos: (batch_size * ~num_points, 3)
|
||||
|
||||
data.batch: (batch_size * ~num_points,), a column vector of graph/pointcloud
|
||||
idendifiers for all nodes of all graphs/pointclouds in the batch. See
|
||||
pytorch_gemometric documentation for more information
|
||||
"""
|
||||
dense_input = True if isinstance(data, torch.Tensor) else False
|
||||
|
||||
if dense_input:
|
||||
# Convert to torch_geometric.data.Data type
|
||||
# data = data.transpose(1, 2).contiguous()
|
||||
batch_size, N, _ = data.shape # (batch_size, num_points, 6)
|
||||
pos = data.view(batch_size*N, -1)
|
||||
batch = torch.zeros((batch_size, N), device=pos.device, dtype=torch.long)
|
||||
for i in range(batch_size):
|
||||
batch[i] = i
|
||||
batch = batch.view(-1)
|
||||
|
||||
data = Data()
|
||||
data.pos, data.batch = pos, batch
|
||||
|
||||
if not hasattr(data, 'x'):
|
||||
data.x = None
|
||||
|
||||
sa0_out = (data.x, data.pos, data.batch)
|
||||
sa1_out = self.sa1_module(*sa0_out)
|
||||
sa2_out = self.sa2_module(*sa1_out)
|
||||
sa3_out = self.sa3_module(*sa2_out)
|
||||
|
||||
tensor, pos, batch = sa3_out
|
||||
tensor = tensor.float()
|
||||
|
||||
tensor = self.lin1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.lin2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.dropout(tensor)
|
||||
tensor = self.lin3(tensor)
|
||||
tensor = self.log_softmax(tensor)
|
||||
return Namespace(main_out=tensor)
|
@ -11,13 +11,10 @@ from torch.utils.data import DataLoader
|
||||
from torchcontrib.optim import SWA
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from _templates.new_project.datasets.template_dataset import TemplateDataset
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
|
||||
from audio_toolset.audio_io import NormalizeLocal
|
||||
from modules.utils import LightningBaseModule
|
||||
from utils.transforms import ToTensor
|
||||
|
||||
from _templates.new_project.utils.project_config import GlobalVar as GlobalVars
|
||||
from .project_config import GlobalVar
|
||||
|
||||
|
||||
class BaseOptimizerMixin:
|
||||
@ -110,31 +107,31 @@ class BaseValMixin:
|
||||
return summary_dict
|
||||
|
||||
|
||||
class BinaryMaskDatasetMixin:
|
||||
class DatasetMixin:
|
||||
|
||||
def build_dataset(self):
|
||||
def build_dataset(self, dataset_class):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
|
||||
# Dataset
|
||||
# =============================================================================
|
||||
# Data Augmentations or Utility Transformations
|
||||
|
||||
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||
transforms = Compose([ToTensor()])
|
||||
|
||||
# Dataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
# TRAIN DATASET
|
||||
train_dataset=TemplateDataset(self.params.root, setting=GlobalVars.DATA_OPTIONS.train,
|
||||
train_dataset=dataset_class(self.params.root, setting=GlobalVar.train,
|
||||
transforms=transforms
|
||||
),
|
||||
|
||||
# VALIDATION DATASET
|
||||
val_dataset=TemplateDataset(self.params.root, setting=GlobalVars.vali,
|
||||
val_dataset=dataset_class(self.params.root, setting=GlobalVar.vali,
|
||||
),
|
||||
|
||||
# TEST DATASET
|
||||
test_dataset=TemplateDataset(self.params.root, setting=GlobalVars.test,
|
||||
test_dataset=dataset_class(self.params.root, setting=GlobalVar.test,
|
||||
),
|
||||
|
||||
)
|
||||
|
@ -1,6 +1,6 @@
|
||||
from argparse import Namespace
|
||||
|
||||
from utils.config import Config
|
||||
from ml_lib.utils.config import Config
|
||||
|
||||
|
||||
class GlobalVar(Namespace):
|
||||
@ -23,8 +23,11 @@ class GlobalVar(Namespace):
|
||||
test ='test'
|
||||
|
||||
|
||||
from models import *
|
||||
|
||||
|
||||
class ThisConfig(Config):
|
||||
|
||||
@property
|
||||
def _model_map(self):
|
||||
return dict()
|
||||
return dict(PN2=PointNet2)
|
||||
|
Loading…
x
Reference in New Issue
Block a user