initial commit - just template files
This commit is contained in:
parent
499691fbc9
commit
9ccbec9d7c
5
.gitignore
vendored
Normal file
5
.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
# my own stuff
|
||||||
|
|
||||||
|
/data
|
||||||
|
/.idea
|
||||||
|
/ml_lib
|
0
__init__.py
Normal file
0
__init__.py
Normal file
57
_parameters.py
Normal file
57
_parameters.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
# Imports
|
||||||
|
# =============================================================================
|
||||||
|
import os
|
||||||
|
from distutils.util import strtobool
|
||||||
|
from argparse import ArgumentParser, Namespace
|
||||||
|
|
||||||
|
# Parameter Configuration
|
||||||
|
# =============================================================================
|
||||||
|
# Argument Parser
|
||||||
|
main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
|
||||||
|
|
||||||
|
# Main Parameters
|
||||||
|
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="")
|
||||||
|
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
|
||||||
|
|
||||||
|
# Project
|
||||||
|
main_arg_parser.add_argument("--project_name", type=str, default='traj-gen', help="")
|
||||||
|
main_arg_parser.add_argument("--project_owner", type=str, default='si11ium', help="")
|
||||||
|
main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.getenv('NEPTUNE_KEY'), help="")
|
||||||
|
|
||||||
|
# Data Parameters
|
||||||
|
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
||||||
|
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
|
||||||
|
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||||
|
main_arg_parser.add_argument("--data_additional_resource_root", type=str, default='res/resource/root', help="")
|
||||||
|
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||||
|
|
||||||
|
# Transformations
|
||||||
|
main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--transformations_normalize", type=strtobool, default=False, help="")
|
||||||
|
|
||||||
|
# Transformations
|
||||||
|
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
|
||||||
|
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
|
||||||
|
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
|
||||||
|
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
|
||||||
|
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
|
||||||
|
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
|
||||||
|
|
||||||
|
# Model
|
||||||
|
main_arg_parser.add_argument("--model_type", type=str, default="CNNRouteGenerator", help="")
|
||||||
|
|
||||||
|
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
|
||||||
|
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
|
||||||
|
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=False, help="")
|
||||||
|
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
|
||||||
|
|
||||||
|
# Model 2: Layer Specific Stuff
|
||||||
|
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
|
||||||
|
main_arg_parser.add_argument("--model_features", type=int, default=16, help="")
|
||||||
|
|
||||||
|
# Parse it
|
||||||
|
args: Namespace = main_arg_parser.parse_args()
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
pass
|
6
datasets/template_dataset.py
Normal file
6
datasets/template_dataset.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
from torch.utils.data import Dataset
|
||||||
|
|
||||||
|
|
||||||
|
class TemplateDataset(Dataset):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(TemplateDataset, self).__init__()
|
81
main.py
Normal file
81
main.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
# Imports
|
||||||
|
# =============================================================================
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from pytorch_lightning import Trainer
|
||||||
|
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
||||||
|
|
||||||
|
from modules.utils import LightningBaseModule
|
||||||
|
from utils.config import Config
|
||||||
|
from utils.logging import Logger
|
||||||
|
from utils.model_io import SavedLightningModels
|
||||||
|
|
||||||
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def run_lightning_loop(config_obj):
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
# ================================================================================
|
||||||
|
# Logger
|
||||||
|
with Logger(config_obj) as logger:
|
||||||
|
# Callbacks
|
||||||
|
# =============================================================================
|
||||||
|
# Checkpoint Saving
|
||||||
|
checkpoint_callback = ModelCheckpoint(
|
||||||
|
filepath=str(logger.log_dir / 'ckpt_weights'),
|
||||||
|
verbose=True, save_top_k=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
# =============================================================================
|
||||||
|
# Early Stopping
|
||||||
|
# TODO: For This to work, one must set a validation step and End Eval and Score
|
||||||
|
early_stopping_callback = EarlyStopping(
|
||||||
|
monitor='val_loss',
|
||||||
|
min_delta=0.0,
|
||||||
|
patience=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Model
|
||||||
|
# =============================================================================
|
||||||
|
# Init
|
||||||
|
model: LightningBaseModule = config_obj.model_class(config_obj.model_paramters)
|
||||||
|
model.init_weights(torch.nn.init.xavier_normal_)
|
||||||
|
|
||||||
|
# Trainer
|
||||||
|
# =============================================================================
|
||||||
|
trainer = Trainer(max_epochs=config_obj.train.epochs,
|
||||||
|
show_progress_bar=True,
|
||||||
|
weights_save_path=logger.log_dir,
|
||||||
|
gpus=[0] if torch.cuda.is_available() else None,
|
||||||
|
check_val_every_n_epoch=10,
|
||||||
|
# num_sanity_val_steps=config_obj.train.num_sanity_val_steps,
|
||||||
|
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
|
||||||
|
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
|
||||||
|
checkpoint_callback=checkpoint_callback,
|
||||||
|
logger=logger,
|
||||||
|
fast_dev_run=config_obj.main.debug,
|
||||||
|
early_stop_callback=None
|
||||||
|
)
|
||||||
|
|
||||||
|
# Train It
|
||||||
|
trainer.fit(model)
|
||||||
|
|
||||||
|
# Save the last state & all parameters
|
||||||
|
trainer.save_checkpoint(config_obj.exp_path.log_dir / 'weights.ckpt')
|
||||||
|
model.save_to_disk(config_obj.exp_path)
|
||||||
|
|
||||||
|
# Evaluate It
|
||||||
|
if config_obj.main.eval:
|
||||||
|
trainer.test()
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from _templates.new_project._parameters import args
|
||||||
|
config = Config.read_namespace(args)
|
||||||
|
trained_model = run_lightning_loop(config)
|
28
multi_run.py
Normal file
28
multi_run.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
import warnings
|
||||||
|
|
||||||
|
from _templates.new_project.utils.project_config import Config
|
||||||
|
|
||||||
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
|
||||||
|
# Imports
|
||||||
|
# =============================================================================
|
||||||
|
|
||||||
|
from _templates.new_project.main import run_lightning_loop, args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
# Model Settings
|
||||||
|
config = Config().read_namespace(args)
|
||||||
|
# bias, activation, model, norm, max_epochs
|
||||||
|
cnn_classifier = dict(train_epochs=10, model_use_bias=True, model_use_norm=True, data_batchsize=512)
|
||||||
|
# bias, activation, model, norm, max_epochs
|
||||||
|
|
||||||
|
for arg_dict in [cnn_classifier]:
|
||||||
|
for seed in range(5):
|
||||||
|
arg_dict.update(main_seed=seed)
|
||||||
|
|
||||||
|
config = config.update(arg_dict)
|
||||||
|
|
||||||
|
run_lightning_loop(config)
|
0
utils/__init__.py
Normal file
0
utils/__init__.py
Normal file
172
utils/module_mixins.py
Normal file
172
utils/module_mixins.py
Normal file
@ -0,0 +1,172 @@
|
|||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
|
from abc import ABC
|
||||||
|
from argparse import Namespace
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from torch import nn
|
||||||
|
from torch.optim import Adam
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torchcontrib.optim import SWA
|
||||||
|
from torchvision.transforms import Compose
|
||||||
|
|
||||||
|
from _templates.new_project.datasets.template_dataset import TemplateDataset
|
||||||
|
|
||||||
|
from audio_toolset.audio_io import NormalizeLocal
|
||||||
|
from modules.utils import LightningBaseModule
|
||||||
|
from utils.transforms import ToTensor
|
||||||
|
|
||||||
|
from _templates.new_project.utils.project_config import GlobalVar as GlobalVars
|
||||||
|
|
||||||
|
|
||||||
|
class BaseOptimizerMixin:
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
opt = Adam(params=self.parameters(), lr=self.params.lr, weight_decay=self.params.weight_decay)
|
||||||
|
if self.params.sto_weight_avg:
|
||||||
|
# TODO: Make this glabaly available.
|
||||||
|
opt = SWA(opt, swa_start=10, swa_freq=5, swa_lr=0.05)
|
||||||
|
return opt
|
||||||
|
|
||||||
|
def on_train_end(self):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
for opt in self.trainer.optimizers:
|
||||||
|
if isinstance(opt, SWA):
|
||||||
|
opt.swap_swa_sgd()
|
||||||
|
|
||||||
|
def on_epoch_end(self):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
if self.params.opt_reset_interval:
|
||||||
|
if self.current_epoch % self.params.opt_reset_interval == 0:
|
||||||
|
for opt in self.trainer.optimizers:
|
||||||
|
opt.state = defaultdict(dict)
|
||||||
|
|
||||||
|
|
||||||
|
class BaseTrainMixin:
|
||||||
|
|
||||||
|
absolute_loss = nn.L1Loss()
|
||||||
|
nll_loss = nn.NLLLoss()
|
||||||
|
bce_loss = nn.BCELoss()
|
||||||
|
|
||||||
|
def training_step(self, batch_xy, batch_nb, *_, **__):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
batch_x, batch_y = batch_xy
|
||||||
|
y = self(batch_x).main_out
|
||||||
|
bce_loss = self.bce_loss(y, batch_y)
|
||||||
|
return dict(loss=bce_loss, log=dict(batch_nb=batch_nb))
|
||||||
|
|
||||||
|
def training_epoch_end(self, outputs):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
keys = list(outputs[0].keys())
|
||||||
|
|
||||||
|
summary_dict = dict(log={f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||||
|
for output in outputs]))
|
||||||
|
for key in keys if 'loss' in key})
|
||||||
|
return summary_dict
|
||||||
|
|
||||||
|
|
||||||
|
class BaseValMixin:
|
||||||
|
|
||||||
|
absolute_loss = nn.L1Loss()
|
||||||
|
nll_loss = nn.NLLLoss()
|
||||||
|
bce_loss = nn.BCELoss()
|
||||||
|
|
||||||
|
def validation_step(self, batch_xy, batch_idx, _, *__, **___):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
batch_x, batch_y = batch_xy
|
||||||
|
y = self(batch_x).main_out
|
||||||
|
val_bce_loss = self.bce_loss(y, batch_y)
|
||||||
|
return dict(val_bce_loss=val_bce_loss,
|
||||||
|
batch_idx=batch_idx, y=y, batch_y=batch_y)
|
||||||
|
|
||||||
|
def validation_epoch_end(self, outputs, *_, **__):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
summary_dict = dict(log=dict())
|
||||||
|
# In case of Multiple given dataloader this will outputs will be: list[list[dict[]]]
|
||||||
|
# for output_idx, output in enumerate(outputs):
|
||||||
|
# else:list[dict[]]
|
||||||
|
keys = list(outputs.keys())
|
||||||
|
# Add Every Value das has a "loss" in it, by calc. mean over all occurences.
|
||||||
|
summary_dict['log'].update({f'mean_{key}': torch.mean(torch.stack([output[key]
|
||||||
|
for output in outputs]))
|
||||||
|
for key in keys if 'loss' in key}
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
# Additional Score like the unweighted Average Recall:
|
||||||
|
# UnweightedAverageRecall
|
||||||
|
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
|
||||||
|
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
|
||||||
|
|
||||||
|
y_pred = (y_pred >= 0.5).astype(np.float32)
|
||||||
|
|
||||||
|
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
|
||||||
|
sample_weight=None, zero_division='warn')
|
||||||
|
|
||||||
|
summary_dict['log'].update({f'uar_score': uar_score})
|
||||||
|
"""
|
||||||
|
|
||||||
|
return summary_dict
|
||||||
|
|
||||||
|
|
||||||
|
class BinaryMaskDatasetMixin:
|
||||||
|
|
||||||
|
def build_dataset(self):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
# =============================================================================
|
||||||
|
# Data Augmentations or Utility Transformations
|
||||||
|
|
||||||
|
transforms = Compose([NormalizeLocal(), ToTensor()])
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
dataset = Namespace(
|
||||||
|
**dict(
|
||||||
|
# TRAIN DATASET
|
||||||
|
train_dataset=TemplateDataset(self.params.root, setting=GlobalVars.DATA_OPTIONS.train,
|
||||||
|
transforms=transforms
|
||||||
|
),
|
||||||
|
|
||||||
|
# VALIDATION DATASET
|
||||||
|
val_dataset=TemplateDataset(self.params.root, setting=GlobalVars.vali,
|
||||||
|
),
|
||||||
|
|
||||||
|
# TEST DATASET
|
||||||
|
test_dataset=TemplateDataset(self.params.root, setting=GlobalVars.test,
|
||||||
|
),
|
||||||
|
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
|
class BaseDataloadersMixin(ABC):
|
||||||
|
|
||||||
|
# Dataloaders
|
||||||
|
# ================================================================================
|
||||||
|
# Train Dataloader
|
||||||
|
def train_dataloader(self):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
# In case you want to implement bootstraping
|
||||||
|
# sampler = RandomSampler(self.dataset.train_dataset, True, len(self.dataset.train_dataset))
|
||||||
|
sampler = None
|
||||||
|
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True if not sampler else None, sampler=sampler,
|
||||||
|
batch_size=self.params.batch_size,
|
||||||
|
num_workers=self.params.worker)
|
||||||
|
|
||||||
|
# Test Dataloader
|
||||||
|
def test_dataloader(self):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
return DataLoader(dataset=self.dataset.test_dataset, shuffle=False,
|
||||||
|
batch_size=self.params.batch_size,
|
||||||
|
num_workers=self.params.worker)
|
||||||
|
|
||||||
|
# Validation Dataloader
|
||||||
|
def val_dataloader(self):
|
||||||
|
assert isinstance(self, LightningBaseModule)
|
||||||
|
val_dataloader = DataLoader(dataset=self.dataset.val_dataset, shuffle=False,
|
||||||
|
batch_size=self.params.batch_size, num_workers=self.params.worker)
|
||||||
|
# Alternative return [val_dataloader, alternative dataloader], there will be a dataloader_idx in validation_step
|
||||||
|
return val_dataloader
|
30
utils/project_config.py
Normal file
30
utils/project_config.py
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
from argparse import Namespace
|
||||||
|
|
||||||
|
from utils.config import Config
|
||||||
|
|
||||||
|
|
||||||
|
class GlobalVar(Namespace):
|
||||||
|
# Labels for classes
|
||||||
|
LEFT = 1
|
||||||
|
RIGHT = 0
|
||||||
|
WRONG = -1
|
||||||
|
|
||||||
|
# Colors for img files
|
||||||
|
WHITE = 255
|
||||||
|
BLACK = 0
|
||||||
|
|
||||||
|
# Variables for plotting
|
||||||
|
PADDING = 0.25
|
||||||
|
DPI = 50
|
||||||
|
|
||||||
|
# DATAOPTIONS
|
||||||
|
train='train',
|
||||||
|
vali='vali',
|
||||||
|
test='test'
|
||||||
|
|
||||||
|
|
||||||
|
class ThisConfig(Config):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _model_map(self):
|
||||||
|
return dict()
|
Loading…
x
Reference in New Issue
Block a user