eval running - offline logger implemented -> Test it!

This commit is contained in:
Si11ium 2020-05-30 18:12:42 +02:00
parent ba7c0280ae
commit 8d0577b756
9 changed files with 212 additions and 102 deletions

View File

@ -11,7 +11,7 @@ main_arg_parser = ArgumentParser(description="parser for fast-neural-style")
# Main Parameters
main_arg_parser.add_argument("--main_debug", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_eval", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--main_eval", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--main_seed", type=int, default=69, help="")
# Project
@ -21,7 +21,6 @@ main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.geten
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
main_arg_parser.add_argument("--data_dataset_length", type=int, default=10000, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
@ -29,25 +28,28 @@ main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=
# main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")
# main_arg_parser.add_argument("--transformations_normalize", type=strtobool, default=False, help="")
# Transformations
# Training
main_arg_parser.add_argument("--train_outpath", type=str, default="output", help="")
main_arg_parser.add_argument("--train_version", type=strtobool, required=False, help="")
main_arg_parser.add_argument("--train_epochs", type=int, default=500, help="")
main_arg_parser.add_argument("--train_batch_size", type=int, default=200, help="")
main_arg_parser.add_argument("--train_batch_size", type=int, default=10, help="")
main_arg_parser.add_argument("--train_lr", type=float, default=1e-3, help="")
main_arg_parser.add_argument("--train_weight_decay", type=float, default=1e-8, help="")
main_arg_parser.add_argument("--train_num_sanity_val_steps", type=int, default=0, help="")
main_arg_parser.add_argument("--train_sto_weight_avg", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--train_opt_reset_interval", type=strtobool, default=False, help="")
# Model
main_arg_parser.add_argument("--model_type", type=str, default="PN2", help="")
main_arg_parser.add_argument("--model_norm_as_feature", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")
main_arg_parser.add_argument("--model_use_bias", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--model_use_norm", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_dropout", type=float, default=0.00, help="")
# Model 2: Layer Specific Stuff
main_arg_parser.add_argument("--model_filters", type=str, default="[16, 32, 64]", help="")
main_arg_parser.add_argument("--model_features", type=int, default=16, help="")
# Parse it

View File

@ -5,7 +5,7 @@ from abc import ABC
from pathlib import Path
from torch.utils.data import Dataset
from ml_lib.point_toolset.sampling import FarthestpointSampling
from ml_lib.point_toolset.sampling import FarthestpointSampling, RandomSampling
import numpy as np
@ -22,16 +22,21 @@ class _Point_Dataset(ABC, Dataset):
raise NotImplementedError
headers = ['x', 'y', 'z', 'xn', 'yn', 'zn', 'label', 'cl_idx']
samplers = dict(fps=FarthestpointSampling, rnd=RandomSampling)
def __init__(self, root=Path('data'), sampling_k=2048, transforms=None, load_preprocessed=True, *args, **kwargs):
def __init__(self, root=Path('data'), norm_as_feature=True, sampling_k=2048, sampling='rnd',
transforms=None, load_preprocessed=True, split='train', dense_output=False, *args, **kwargs):
super(_Point_Dataset, self).__init__()
self.dense_output = dense_output
self.split = split
self.norm_as_feature = norm_as_feature
self.load_preprocessed = load_preprocessed
self.transforms = transforms if transforms else lambda x: x
self.sampling_k = sampling_k
self.sampling = FarthestpointSampling(K=self.sampling_k)
self.sampling = self.samplers[sampling](K=self.sampling_k)
self.root = Path(root)
self.raw = self.root / 'raw'
self.raw = self.root / 'raw' / self.split
self.processed_ext = '.pik'
self.raw_ext = '.xyz'
self.processed = self.root / self.setting

View File

@ -9,6 +9,7 @@ from ._point_dataset import _Point_Dataset
class FullCloudsDataset(_Point_Dataset):
setting = 'pc'
split: str
def __init__(self, *args, **kwargs):
super(FullCloudsDataset, self).__init__(*args, **kwargs)
@ -21,13 +22,15 @@ class FullCloudsDataset(_Point_Dataset):
with processed_file_path.open('rb') as processed_file:
pointcloud = pickle.load(processed_file)
points = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z'],
pointcloud['xn'], pointcloud['yn'], pointcloud['zn']
),
axis=-1)
# When yopu want to return points and normal seperately
# normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
label = pointcloud['label']
sample_idxs = self.sampling(points)
return points[sample_idxs].astype(np.float), label[sample_idxs].astype(np.int)
position = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z']), axis=-1)
normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
label = pointcloud['label']
sample_idxs = self.sampling(position)
return (normal[sample_idxs].astype(np.float),
position[sample_idxs].astype(np.float),
label[sample_idxs].astype(np.int))

View File

@ -26,7 +26,7 @@ class FullCloudsDataset(_Point_Dataset):
# When yopu want to return points and normal seperately
# normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
label = np.stack((pointcloud['label'], pointcloud['cl_idx']))
label = pointcloud['cl_idx']
sample_idxs = self.sampling(points)
return points[sample_idxs], label[sample_idxs]

View File

@ -26,7 +26,7 @@ class FullCloudsDataset(_Point_Dataset):
# When yopu want to return points and normal seperately
# normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
label = np.stack((pointcloud['label'], pointcloud['cl_idx']))
label = pointcloud['cl_idx']
sample_idxs = self.sampling(points)
return points[sample_idxs], label[sample_idxs]

View File

@ -66,8 +66,8 @@ def run_lightning_loop(config_obj):
trainer.fit(model)
# Save the last state & all parameters
trainer.save_checkpoint(config_obj.exp_path.log_dir / 'weights.ckpt')
model.save_to_disk(config_obj.exp_path)
trainer.save_checkpoint(logger.log_dir / 'weights.ckpt')
model.save_to_disk(logger.log_dir)
# Evaluate It
if config_obj.main.eval:

View File

@ -1,15 +1,16 @@
from argparse import Namespace
import torch.nn.functional as F
import torch
from torch.optim import Adam
from torch import nn
from torch_geometric.data import Data
from datasets.full_pointclouds import FullCloudsDataset
from ml_lib.modules.geometric_blocks import SAModule, GlobalSAModule, MLP
from ml_lib.modules.geometric_blocks import SAModule, GlobalSAModule, MLP, FPModule
from ml_lib.modules.util import LightningBaseModule, F_x
from utils.module_mixins import BaseValMixin, BaseTrainMixin, BaseOptimizerMixin, BaseDataloadersMixin, DatasetMixin
from utils.project_config import GlobalVar
class PointNet2(BaseValMixin,
@ -31,31 +32,27 @@ class PointNet2(BaseValMixin,
# =============================================================================
# Additional parameters
self.in_shape = self.dataset.train_dataset.sample_shape
self.channels = self.in_shape[-1]
# Modules
self.sa1_module = SAModule(0.5, 0.2, MLP([self.channels, 64, 64, 128]))
self.sa2_module = SAModule(0.25, 0.4, MLP([128 + self.channels, 128, 128, 256]))
self.sa3_module = GlobalSAModule(MLP([256 + self.channels, 256, 512, 1024]))
self.sa1_module = SAModule(0.2, 0.2, MLP([3 + 3, 64, 64, 128]))
self.sa2_module = SAModule(0.25, 0.4, MLP([128 + 3, 128, 128, 256]))
self.sa3_module = GlobalSAModule(MLP([256 + 3, 256, 512, 1024]))
self.lin1 = nn.Linear(1024, 512)
self.lin2 = nn.Linear(512, 256)
self.lin3 = nn.Linear(256, 10)
self.fp3_module = FPModule(1, MLP([1024 + 256, 256, 256]))
self.fp2_module = FPModule(3, MLP([256 + 128, 256, 128]))
self.fp1_module = FPModule(3, MLP([128 + 3, 128, 128, 128]))
self.lin1 = torch.nn.Linear(128, 128)
self.lin2 = torch.nn.Linear(128, 128)
self.lin3 = torch.nn.Linear(128, len(GlobalVar.classes))
# Utility
self.dropout = nn.Dropout(self.params.dropout) if self.params.dropout else F_x(None)
self.activation = self.params.activation()
self.log_softmax = nn.LogSoftmax(dim=-1)
def configure_optimizers(self):
return Adam(self.parameters(), lr=self.params.lr, weight_decay=self.params.weight_decay)
def forward(self, data, **kwargs):
"""
data: a batch of input, torch.Tensor or torch_geometric.data.Data type
- torch.Tensor: (batch_size, 3, num_points), as common batch input
data: a batch of input torch_geometric.data.Data type
- torch_geometric.data.Data, as torch_geometric batch input:
data.x: (batch_size * ~num_points, C), batch nodes/points feature,
~num_points means each sample can have different number of points/nodes
@ -66,37 +63,22 @@ class PointNet2(BaseValMixin,
idendifiers for all nodes of all graphs/pointclouds in the batch. See
pytorch_gemometric documentation for more information
"""
dense_input = True if isinstance(data, torch.Tensor) else False
if dense_input:
# Convert to torch_geometric.data.Data type
# data = data.transpose(1, 2).contiguous()
batch_size, N, _ = data.shape # (batch_size, num_points, 6)
pos = data.view(batch_size*N, -1)
batch = torch.zeros((batch_size, N), device=pos.device, dtype=torch.long)
for i in range(batch_size):
batch[i] = i
batch = batch.view(-1)
data = Data()
data.pos, data.batch = pos, batch
if not hasattr(data, 'x'):
data.x = None
sa0_out = (data.x, data.pos, data.batch)
sa1_out = self.sa1_module(*sa0_out)
sa2_out = self.sa2_module(*sa1_out)
sa3_out = self.sa3_module(*sa2_out)
tensor, pos, batch = sa3_out
fp3_out = self.fp3_module(*sa3_out, *sa2_out)
fp2_out = self.fp2_module(*fp3_out, *sa1_out)
tensor, _, _ = self.fp1_module(*fp2_out, *sa0_out)
tensor = tensor.float()
tensor = self.lin1(tensor)
tensor = self.activation(tensor)
tensor = self.lin1(tensor)
tensor = self.dropout(tensor)
tensor = self.lin2(tensor)
tensor = self.activation(tensor)
tensor = self.dropout(tensor)
tensor = self.lin3(tensor)
tensor = self.log_softmax(tensor)

View File

@ -1,10 +1,17 @@
from collections import defaultdict
from itertools import cycle
from abc import ABC
from argparse import Namespace
import torch
import numpy as np
from numpy import interp
from sklearn.metrics import roc_curve, auc, confusion_matrix, ConfusionMatrixDisplay, f1_score, roc_auc_score
import matplotlib.pyplot as plt
from torch import nn
from torch.optim import Adam
from torch.utils.data import DataLoader
@ -12,7 +19,9 @@ from torchcontrib.optim import SWA
from torchvision.transforms import Compose
from ml_lib.modules.util import LightningBaseModule
from ml_lib.utils.tools import to_one_hot
from ml_lib.utils.transforms import ToTensor
from ml_lib.point_toolset.point_io import BatchToData
from .project_config import GlobalVar
@ -43,16 +52,21 @@ class BaseOptimizerMixin:
class BaseTrainMixin:
# Absolute Error
absolute_loss = nn.L1Loss()
# negative Log Likelyhood
nll_loss = nn.NLLLoss()
# Binary Cross Entropy
bce_loss = nn.BCELoss()
# Batch To Data
batch_to_data = BatchToData()
def training_step(self, batch_xy, batch_nb, *_, **__):
def training_step(self, batch_pos_x_y, batch_nb, *_, **__):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
bce_loss = self.bce_loss(y, batch_y)
return dict(loss=bce_loss, log=dict(batch_nb=batch_nb))
data = self.batch_to_data(*batch_pos_x_y)
y = self(data).main_out
nll_loss = self.nll_loss(y, data.y)
return dict(loss=nll_loss, log=dict(batch_nb=batch_nb))
def training_epoch_end(self, outputs):
assert isinstance(self, LightningBaseModule)
@ -66,17 +80,20 @@ class BaseTrainMixin:
class BaseValMixin:
# Absolute Error
absolute_loss = nn.L1Loss()
# negative Log Likelyhood
nll_loss = nn.NLLLoss()
# Binary Cross Entropy
bce_loss = nn.BCELoss()
def validation_step(self, batch_xy, batch_idx, _, *__, **___):
def validation_step(self, batch_pos_x_y, batch_idx, *_, **__):
assert isinstance(self, LightningBaseModule)
batch_x, batch_y = batch_xy
y = self(batch_x).main_out
val_bce_loss = self.bce_loss(y, batch_y)
return dict(val_bce_loss=val_bce_loss,
batch_idx=batch_idx, y=y, batch_y=batch_y)
data = self.batch_to_data(*batch_pos_x_y)
y = self(data).main_out
nll_loss = self.nll_loss(y, data.y)
return dict(val_nll_loss=nll_loss,
batch_idx=batch_idx, y=y, batch_y=data.y)
def validation_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
@ -84,25 +101,107 @@ class BaseValMixin:
# In case of Multiple given dataloader this will outputs will be: list[list[dict[]]]
# for output_idx, output in enumerate(outputs):
# else:list[dict[]]
keys = list(outputs.keys())
keys = list(outputs[0].keys())
# Add Every Value das has a "loss" in it, by calc. mean over all occurences.
summary_dict['log'].update({f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
)
"""
# Additional Score like the unweighted Average Recall:
# UnweightedAverageRecall
#######################################################################################
# Additional Score - UAR - ROC - Conf. Matrix - F1
#######################################################################################
#
# INIT
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
y_true_one_hot = to_one_hot(y_true)
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
y_pred_max = np.argmax(y_pred, axis=1)
y_pred = (y_pred >= 0.5).astype(np.float32)
class_names = {val: key for key, val in GlobalVar.classes.__dict__().items()}
######################################################################################
#
# F1 SCORE
micro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='micro', sample_weight=None,
zero_division=True)
macro_f1_score = f1_score(y_true, y_pred_max, labels=None, pos_label=1, average='macro', sample_weight=None,
zero_division=True)
summary_dict['log'].update(dict(micro_f1_score=micro_f1_score, macro_f1_score=macro_f1_score))
uar_score = sklearn.metrics.recall_score(y_true, y_pred, labels=[0, 1], average='macro',
sample_weight=None, zero_division='warn')
#######################################################################################
#
# ROC Curve
summary_dict['log'].update({f'uar_score': uar_score})
"""
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(len(GlobalVar.classes)):
fpr[i], tpr[i], _ = roc_curve(y_true_one_hot[:, i], y_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_true_one_hot.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(len(GlobalVar.classes))]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(len(GlobalVar.classes)):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= len(GlobalVar.classes)
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label=f'micro ROC ({round(roc_auc["micro"], 2)})',
color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr["macro"], tpr["macro"],
label=f'macro ROC({round(roc_auc["macro"], 2)})]',
color='navy', linestyle=':', linewidth=4)
colors = cycle(['firebrick', 'orangered', 'gold', 'olive', 'limegreen', 'aqua',
'dodgerblue', 'slategrey', 'royalblue', 'indigo', 'fuchsia'], )
for i, color in zip(range(len(GlobalVar.classes)), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=2, label=f'{class_names[i]} ({round(roc_auc[i],2 )})')
plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="lower right")
self.logger.log_image('ROC', image=plt.gcf(), step=self.current_epoch)
plt.clf()
#######################################################################################
#
# ROC SCORE
macro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
average="macro")
summary_dict['log'].update(macro_roc_auc_ovr=macro_roc_auc_ovr)
#######################################################################################
#
# Confusion matrix
cm = confusion_matrix(y_true, y_pred_max, labels=[class_name for class_name in class_names], normalize='all')
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot(include_values=True)
self.logger.log_image('Confusion Matrix', image=plt.gcf(), step=self.current_epoch)
return summary_dict
@ -122,18 +221,17 @@ class DatasetMixin:
dataset = Namespace(
**dict(
# TRAIN DATASET
train_dataset=dataset_class(self.params.root, setting=GlobalVar.train,
train_dataset=dataset_class(self.params.root, setting=GlobalVar.data_split.train,
transforms=transforms
),
# VALIDATION DATASET
val_dataset=dataset_class(self.params.root, setting=GlobalVar.vali,
val_dataset=dataset_class(self.params.root, setting=GlobalVar.data_split.devel,
),
# TEST DATASET
test_dataset=dataset_class(self.params.root, setting=GlobalVar.test,
test_dataset=dataset_class(self.params.root, setting=GlobalVar.data_split.test,
),
)
)
return dataset

View File

@ -3,24 +3,44 @@ from argparse import Namespace
from ml_lib.utils.config import Config
class GlobalVar(Namespace):
# Labels for classes
LEFT = 1
RIGHT = 0
WRONG = -1
class DataClass(Namespace):
# Colors for img files
WHITE = 255
BLACK = 0
def __len__(self):
return len(self.__dict__())
def __dict__(self):
return {key: val for key, val in self.__class__.__dict__.items() if '__' not in key}
def __repr__(self):
return f'{self.__class__.__name__}({self.__dict__().__repr__()})'
class Classes(DataClass):
# Object Classes for Point Segmentation
Sphere = 0
Cylinder = 1
Cone = 2
Box = 3
Polytope = 4
Torus = 5
Plane = 6
class DataSplit(DataClass):
# DATA SPLIT OPTIONS
train = 'train',
devel = 'devel',
test = 'test'
class GlobalVar(DataClass):
# Variables for plotting
PADDING = 0.25
DPI = 50
# DATAOPTIONS
train ='train',
vali ='vali',
test ='test'
data_split = DataSplit()
classes = Classes()
from models import *