# Conflicts:
#	main_pipeline.py
This commit is contained in:
Markus Friedrich 2020-06-26 16:32:19 +02:00
commit 84c879e5bf
4 changed files with 7 additions and 5 deletions

View File

@ -25,9 +25,9 @@ main_arg_parser.add_argument("--data_npoints", type=int, default=1024, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_refresh", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--data_dataset_type", type=str, default='ShapeNetPartSegDataset', help="")
main_arg_parser.add_argument("--data_cluster_type", type=str, default='grid', help="")
main_arg_parser.add_argument("--data_normals_as_cords", type=strtobool, default=False, help="")
main_arg_parser.add_argument("--data_poly_as_plane", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_cluster_type", type=str, default='prim', help="")
main_arg_parser.add_argument("--data_normals_as_cords", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--data_poly_as_plane", type=strtobool, default=False, help="")
# Transformations
# main_arg_parser.add_argument("--transformations_to_tensor", type=strtobool, default=False, help="")

View File

@ -27,7 +27,7 @@ def run_lightning_loop(config_obj):
checkpoint_callback = ModelCheckpoint(
monitor='mean_loss',
filepath=str(logger.log_dir / 'ckpt_weights'),
verbose=True, save_top_k=10,
verbose=True, save_top_k=3,
)
# =============================================================================

View File

@ -67,15 +67,17 @@ if __name__ == '__main__':
type_cluster_min_pts = 50
model_path = Path('output') / 'PN2' / 'PN_9843bf499399786cfd58fe79fa1b3db8' / 'version_0'
loaded_model = restore_logger_and_model(model_path)
loaded_model.eval()
transforms = Compose([NormalizeScale(), ])
test_dataset = ShapeNetPartSegDataset('data', mode=GlobalVar.data_split.predict, collate_per_segment=False,
refresh=True, transform=transforms)
refresh=True, transform=transforms) # , cluster_type='pc')
grid_clusters = cluster_cubes(test_dataset[0], grid_clusters, max_points_per_cluster=grid_cluster_max_pts)
ps.init()
# ========================== Grid Clustering ==========================

Binary file not shown.