Normalization and transforms for batch_to_data class
This commit is contained in:
@@ -16,13 +16,12 @@ from torch import nn
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from torch_geometric.data import Data
|
||||
|
||||
from torchcontrib.optim import SWA
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
|
||||
from ml_lib.modules.util import LightningBaseModule
|
||||
from ml_lib.utils.tools import to_one_hot
|
||||
from ml_lib.utils.transforms import ToTensor
|
||||
from ml_lib.point_toolset.point_io import BatchToData
|
||||
|
||||
from .project_config import GlobalVar
|
||||
|
||||
@@ -59,12 +58,10 @@ class BaseTrainMixin:
|
||||
nll_loss = nn.NLLLoss()
|
||||
# Binary Cross Entropy
|
||||
bce_loss = nn.BCELoss()
|
||||
# Batch To Data
|
||||
batch_to_data = BatchToData()
|
||||
|
||||
def training_step(self, batch_pos_x_n_y_c, batch_nb, *_, **__):
|
||||
def training_step(self, batch_norm_pos_y_c, batch_nb, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
data = self.batch_to_data(*batch_pos_x_n_y_c) if not isinstance(batch_pos_x_n_y_c, Data) else batch_pos_x_n_y_c
|
||||
data = self.batch_to_data(*batch_norm_pos_y_c) if not isinstance(batch_norm_pos_y_c, Data) else batch_norm_pos_y_c
|
||||
y = self(data).main_out
|
||||
nll_loss = self.nll_loss(y, data.yl)
|
||||
return dict(loss=nll_loss, log=dict(batch_nb=batch_nb))
|
||||
@@ -87,8 +84,6 @@ class BaseValMixin:
|
||||
nll_loss = nn.NLLLoss()
|
||||
# Binary Cross Entropy
|
||||
bce_loss = nn.BCELoss()
|
||||
# Batch To Data
|
||||
batch_to_data = BatchToData()
|
||||
|
||||
def validation_step(self, batch_pos_x_n_y_c, batch_idx, *_, **__):
|
||||
assert isinstance(self, LightningBaseModule)
|
||||
@@ -230,14 +225,11 @@ class DatasetMixin:
|
||||
# =============================================================================
|
||||
# Data Augmentations or Utility Transformations
|
||||
|
||||
transforms = Compose([ToTensor()])
|
||||
|
||||
# Dataset
|
||||
dataset = Namespace(
|
||||
**dict(
|
||||
# TRAIN DATASET
|
||||
train_dataset=dataset_class(self.params.root, split=GlobalVar.data_split.train,
|
||||
transforms=transforms, **kwargs),
|
||||
train_dataset=dataset_class(self.params.root, split=GlobalVar.data_split.train, **kwargs),
|
||||
|
||||
# VALIDATION DATASET
|
||||
val_dataset=dataset_class(self.params.root, split=GlobalVar.data_split.devel,
|
||||
|
||||
Reference in New Issue
Block a user