6D prediction files now working
This commit is contained in:
parent
965b805ee9
commit
2a7a236b89
@ -23,11 +23,10 @@ main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.geten
|
||||
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
|
||||
main_arg_parser.add_argument("--data_npoints", type=int, default=1024, help="")
|
||||
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
|
||||
main_arg_parser.add_argument("--data_refresh", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--data_dataset_type", type=str, default='ShapeNetPartSegDataset', help="")
|
||||
main_arg_parser.add_argument("--data_cluster_type", type=str, default='grid', help="")
|
||||
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_normals_as_cords", type=strtobool, default=True, help="")
|
||||
main_arg_parser.add_argument("--data_refresh", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--data_normals_as_cords", type=strtobool, default=False, help="")
|
||||
main_arg_parser.add_argument("--data_poly_as_plane", type=strtobool, default=True, help="")
|
||||
|
||||
# Transformations
|
||||
|
@ -1,3 +1,4 @@
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
from warnings import warn
|
||||
@ -96,19 +97,32 @@ class CustomShapeNet(InMemoryDataset):
|
||||
def _load_dataset(self):
|
||||
data, slices = None, None
|
||||
filepath = self.processed_paths[0]
|
||||
config_path = Path(filepath).parent / f'{self.mode}_params.ini'
|
||||
if config_path.exists() and not self.refresh and not self.mode == DataSplit().predict:
|
||||
with config_path.open('rb') as f:
|
||||
config = pickle.load(f)
|
||||
if config == self._build_config():
|
||||
pass
|
||||
else:
|
||||
print('The given data parameters seem to differ from the one used to process the dataset:')
|
||||
self.refresh = True
|
||||
if self.refresh:
|
||||
try:
|
||||
os.remove(filepath)
|
||||
try:
|
||||
config_path.unlink()
|
||||
except:
|
||||
pass
|
||||
print('Processed Location "Refreshed" (We deleted the Files)')
|
||||
except FileNotFoundError:
|
||||
print('You meant to refresh the allready processed dataset, but there were none...')
|
||||
print('The allready processed dataset was meant to be refreshed, but there was none...')
|
||||
print('continue processing')
|
||||
pass
|
||||
|
||||
while True:
|
||||
try:
|
||||
data, slices = torch.load(filepath)
|
||||
print('Dataset Loaded')
|
||||
print(f'{self.mode.title()}-Dataset Loaded')
|
||||
break
|
||||
except FileNotFoundError:
|
||||
status = self.check_and_resolve_cloud_count()
|
||||
@ -117,8 +131,18 @@ class CustomShapeNet(InMemoryDataset):
|
||||
break
|
||||
self.process()
|
||||
continue
|
||||
if not self.mode == DataSplit().predict:
|
||||
config = self._build_config()
|
||||
with config_path.open('wb') as f:
|
||||
pickle.dump(config, f, pickle.HIGHEST_PROTOCOL)
|
||||
return data, slices
|
||||
|
||||
def _build_config(self):
|
||||
conf_dict = {key:str(val) for key, val in self.__dict__.items() if '__' not in key and key not in [
|
||||
'classes', 'refresh', 'transform', 'data', 'slices'
|
||||
]}
|
||||
return conf_dict
|
||||
|
||||
def _pre_transform_and_filter(self, data):
|
||||
if self.pre_filter is not None and not self.pre_filter(data):
|
||||
data = self.pre_filter(data)
|
||||
@ -129,7 +153,9 @@ class CustomShapeNet(InMemoryDataset):
|
||||
def process(self, delimiter=' '):
|
||||
datasets = defaultdict(list)
|
||||
path_to_clouds = self.raw_dir / self.mode
|
||||
for pointcloud in tqdm(path_to_clouds.glob('*.xyz')):
|
||||
found_clouds = list(path_to_clouds.glob('*.xyz'))
|
||||
if len(found_clouds):
|
||||
for pointcloud in tqdm(found_clouds):
|
||||
if self.cluster_type not in pointcloud.name:
|
||||
continue
|
||||
data = None
|
||||
@ -141,6 +167,11 @@ class CustomShapeNet(InMemoryDataset):
|
||||
if row != '':
|
||||
vals = row.rstrip().split(delimiter)[None:None]
|
||||
vals = [float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0 for x in vals]
|
||||
if len(vals) < 6:
|
||||
raise ValueError('Check the Input!!!!!!')
|
||||
# Expand the values from the csv by fake labels if non are provided.
|
||||
vals = vals + [0] * (8 - len(vals))
|
||||
|
||||
src[vals[-1]].append(vals)
|
||||
|
||||
# Switch from un-pickable Defaultdict to Standard Dict
|
||||
|
@ -54,9 +54,9 @@ def predict_prim_type(input_pc, model):
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
input_pc_path = Path('data') / 'pc' / 'test.xyz'
|
||||
# input_pc_path = Path('data') / 'pc' / 'test.xyz'
|
||||
|
||||
model_path = Path('output') / 'PN2' / 'PN_9843bf499399786cfd58fe79fa1b3db8' / 'version_0'
|
||||
model_path = Path('output') / 'PN2' / 'PN_14628b734c5b651b013ad9e36c406934' / 'version_0'
|
||||
# config_filename = 'config.ini'
|
||||
# config = ThisConfig()
|
||||
# config.read_file((Path(model_path) / config_filename).open('r'))
|
||||
@ -72,7 +72,7 @@ if __name__ == '__main__':
|
||||
test_dataset = ShapeNetPartSegDataset('data', mode=GlobalVar.data_split.predict, collate_per_segment=False,
|
||||
refresh=True, transform=transforms)
|
||||
|
||||
grid_clusters = cluster_cubes(test_dataset[1], [1, 1, 1], max_points_per_cluster=32768)
|
||||
grid_clusters = cluster_cubes(test_dataset[0], [1, 1, 1], max_points_per_cluster=8192)
|
||||
|
||||
ps.init()
|
||||
|
||||
|
@ -24,13 +24,13 @@ class _PointNetCore(LightningBaseModule, ABC):
|
||||
self.cord_dims = 6 if self.params.normals_as_cords else 3
|
||||
|
||||
# Modules
|
||||
self.sa1_module = SAModule(0.2, 0.2, MLP([self.cord_dims, 64, 64, 128]))
|
||||
self.sa1_module = SAModule(0.2, 0.2, MLP([3 + 3, 64, 64, 128]))
|
||||
self.sa2_module = SAModule(0.25, 0.4, MLP([128 + self.cord_dims, 128, 128, 256]))
|
||||
self.sa3_module = GlobalSAModule(MLP([256 + self.cord_dims, 256, 512, 1024]), channels=self.cord_dims)
|
||||
|
||||
self.fp3_module = FPModule(1, MLP([1024 + 256, 256, 256]))
|
||||
self.fp2_module = FPModule(3, MLP([256 + 128, 256, 128]))
|
||||
self.fp1_module = FPModule(3, MLP([128, 128, 128, 128]))
|
||||
self.fp1_module = FPModule(3, MLP([128 + (3 if not self.params.normals_as_cords else 0), 128, 128, 128]))
|
||||
|
||||
self.lin1 = torch.nn.Linear(128, 128)
|
||||
self.lin2 = torch.nn.Linear(128, 128)
|
||||
|
@ -75,10 +75,13 @@ def write_pointcloud(file, pc, numCols=6):
|
||||
|
||||
|
||||
def farthest_point_sampling(pts, K):
|
||||
if K > 0:
|
||||
if isinstance(pts, Data):
|
||||
pts = pts.pos.numpy()
|
||||
if pts.shape[0] < K:
|
||||
return pts
|
||||
else:
|
||||
return pts
|
||||
|
||||
def calc_distances(p0, points):
|
||||
return ((p0[:3] - points[:, :3]) ** 2).sum(axis=1)
|
||||
|
Loading…
x
Reference in New Issue
Block a user