Grid Clusters.

This commit is contained in:
Si11ium
2020-06-07 16:47:52 +02:00
parent 8d0577b756
commit 2a767bead2
14 changed files with 278 additions and 149 deletions

View File

@ -15,6 +15,7 @@ import matplotlib.pyplot as plt
from torch import nn
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch_geometric.data import Data
from torchcontrib.optim import SWA
from torchvision.transforms import Compose
@ -61,11 +62,11 @@ class BaseTrainMixin:
# Batch To Data
batch_to_data = BatchToData()
def training_step(self, batch_pos_x_y, batch_nb, *_, **__):
def training_step(self, batch_pos_x_n_y_c, batch_nb, *_, **__):
assert isinstance(self, LightningBaseModule)
data = self.batch_to_data(*batch_pos_x_y)
data = self.batch_to_data(*batch_pos_x_n_y_c) if not isinstance(batch_pos_x_n_y_c, Data) else batch_pos_x_n_y_c
y = self(data).main_out
nll_loss = self.nll_loss(y, data.y)
nll_loss = self.nll_loss(y, data.yl)
return dict(loss=nll_loss, log=dict(batch_nb=batch_nb))
def training_epoch_end(self, outputs):
@ -86,14 +87,16 @@ class BaseValMixin:
nll_loss = nn.NLLLoss()
# Binary Cross Entropy
bce_loss = nn.BCELoss()
# Batch To Data
batch_to_data = BatchToData()
def validation_step(self, batch_pos_x_y, batch_idx, *_, **__):
def validation_step(self, batch_pos_x_n_y_c, batch_idx, *_, **__):
assert isinstance(self, LightningBaseModule)
data = self.batch_to_data(*batch_pos_x_y)
data = self.batch_to_data(*batch_pos_x_n_y_c) if not isinstance(batch_pos_x_n_y_c, Data) else batch_pos_x_n_y_c
y = self(data).main_out
nll_loss = self.nll_loss(y, data.y)
nll_loss = self.nll_loss(y, data.yl)
return dict(val_nll_loss=nll_loss,
batch_idx=batch_idx, y=y, batch_y=data.y)
batch_idx=batch_idx, y=y, batch_y=data.yl)
def validation_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
@ -114,12 +117,12 @@ class BaseValMixin:
#
# INIT
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy()
y_true_one_hot = to_one_hot(y_true)
y_true_one_hot = to_one_hot(y_true, self.n_classes)
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().numpy()
y_pred_max = np.argmax(y_pred, axis=1)
class_names = {val: key for key, val in GlobalVar.classes.__dict__().items()}
class_names = {val: key for key, val in GlobalVar.classes.items()}
######################################################################################
#
# F1 SCORE
@ -167,7 +170,7 @@ class BaseValMixin:
color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr["macro"], tpr["macro"],
label=f'macro ROC({round(roc_auc["macro"], 2)})]',
label=f'macro ROC({round(roc_auc["macro"], 2)})',
color='navy', linestyle=':', linewidth=4)
colors = cycle(['firebrick', 'orangered', 'gold', 'olive', 'limegreen', 'aqua',
@ -190,25 +193,32 @@ class BaseValMixin:
#
# ROC SCORE
macro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
average="macro")
summary_dict['log'].update(macro_roc_auc_ovr=macro_roc_auc_ovr)
try:
macro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
average="macro")
summary_dict['log'].update(macro_roc_auc_ovr=macro_roc_auc_ovr)
except ValueError:
micro_roc_auc_ovr = roc_auc_score(y_true_one_hot, y_pred, multi_class="ovr",
average="micro")
summary_dict['log'].update(micro_roc_auc_ovr=micro_roc_auc_ovr)
#######################################################################################
#
# Confusion matrix
cm = confusion_matrix(y_true, y_pred_max, labels=[class_name for class_name in class_names], normalize='all')
cm = confusion_matrix([class_names[x] for x in y_true], [class_names[x] for x in y_pred_max],
labels=[class_names[key] for key in class_names.keys()],
normalize='all')
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot(include_values=True)
self.logger.log_image('Confusion Matrix', image=plt.gcf(), step=self.current_epoch)
self.logger.log_image('Confusion Matrix', image=disp.figure_, step=self.current_epoch)
return summary_dict
class DatasetMixin:
def build_dataset(self, dataset_class):
def build_dataset(self, dataset_class, **kwargs):
assert isinstance(self, LightningBaseModule)
# Dataset
@ -221,17 +231,16 @@ class DatasetMixin:
dataset = Namespace(
**dict(
# TRAIN DATASET
train_dataset=dataset_class(self.params.root, setting=GlobalVar.data_split.train,
transforms=transforms
),
train_dataset=dataset_class(self.params.root, split=GlobalVar.data_split.train,
transforms=transforms, **kwargs),
# VALIDATION DATASET
val_dataset=dataset_class(self.params.root, setting=GlobalVar.data_split.devel,
),
val_dataset=dataset_class(self.params.root, split=GlobalVar.data_split.devel,
**kwargs),
# TEST DATASET
test_dataset=dataset_class(self.params.root, setting=GlobalVar.data_split.test,
),
test_dataset=dataset_class(self.params.root, split=GlobalVar.data_split.test,
**kwargs),
)
)
return dataset