New Dataset for per spatial cluster training

This commit is contained in:
Si11ium 2020-06-09 14:08:35 +02:00
parent 821b2d1961
commit 23f3aa878d
10 changed files with 104 additions and 12 deletions

View File

@ -22,6 +22,7 @@ main_arg_parser.add_argument("--project_neptune_key", type=str, default=os.geten
# Data Parameters
main_arg_parser.add_argument("--data_worker", type=int, default=10, help="")
main_arg_parser.add_argument("--data_root", type=str, default='data', help="")
main_arg_parser.add_argument("--data_dataset_type", type=str, default='GridClusters', help="")
main_arg_parser.add_argument("--data_use_preprocessed", type=strtobool, default=True, help="")
# Transformations
@ -41,7 +42,7 @@ main_arg_parser.add_argument("--train_opt_reset_interval", type=strtobool, defau
# Model
# Possible Model arguments are: P2P, PN2, P2G
main_arg_parser.add_argument("--model_type", type=str, default="P2G", help="")
main_arg_parser.add_argument("--model_type", type=str, default="PN2", help="")
main_arg_parser.add_argument("--model_norm_as_feature", type=strtobool, default=True, help="")
main_arg_parser.add_argument("--model_activation", type=str, default="leaky_relu", help="")

View File

@ -4,7 +4,7 @@ from collections import defaultdict
from abc import ABC
from pathlib import Path
from torch.utils.data import Dataset
from torch.utils.data import Dataset, ConcatDataset
from ml_lib.point_toolset.sampling import FarthestpointSampling, RandomSampling
import numpy as np
@ -12,6 +12,10 @@ import numpy as np
class _Point_Dataset(ABC, Dataset):
@property
def name(self):
raise NotImplementedError
@property
def sample_shape(self):
# FixMe: This does not work when more then x/y tuples are returned

View File

@ -9,6 +9,7 @@ from ._point_dataset import _Point_Dataset
class FullCloudsDataset(_Point_Dataset):
split: str
name = 'FullCloudsDataset'
def __init__(self, *args, setting='pc', **kwargs):
self.setting = setting

79
datasets/grid_clusters.py Normal file
View File

@ -0,0 +1,79 @@
import pickle
from collections import defaultdict
import numpy as np
from torch.utils.data import ConcatDataset
from tqdm import trange
from ._point_dataset import _Point_Dataset
class GridClusters(_Point_Dataset):
split: str
name = 'GridClusters'
def __init__(self, *args, n_spatial_clusters=3*3*3, setting='pc', **kwargs):
self.n_spatial_clusters = n_spatial_clusters
self.setting = setting
super(GridClusters, self).__init__(*args, **kwargs)
def __len__(self):
return len(self._files)
def _read_or_load(self, item):
raw_file_path = self._files[item]
processed_file_path = self.processed / raw_file_path.name.replace(self.raw_ext, self.processed_ext)
if not self.load_preprocessed:
processed_file_path.unlink(missing_ok=True)
if not processed_file_path.exists():
# nested default dict
pointcloud = defaultdict(lambda: defaultdict(list))
with raw_file_path.open('r') as raw_file:
for row in raw_file:
values = [float(x) for x in row.strip().split(' ')]
for header, value in zip(self.headers, values):
pointcloud[int(values[-1])][header].append(value)
for cluster in pointcloud.keys():
for key in pointcloud[cluster].keys():
pointcloud[cluster][key] = np.asarray(pointcloud[cluster][key])
pointcloud[cluster] = dict(pointcloud[cluster])
pointcloud = dict(pointcloud)
with processed_file_path.open('wb') as processed_file:
pickle.dump(pointcloud, processed_file)
return processed_file_path
def __getitem__(self, item):
processed_file_path = self._read_or_load(item)
with processed_file_path.open('rb') as processed_file:
pointcloud = pickle.load(processed_file)
# By number Variant
# cl_idx_list = np.cumsum([[len(self) // self.n_spatial_clusters, ] * self.n_spatial_clusters])
# cl_idx = [idx for idx, x in enumerate(cl_idx_list) if item <= x][0]
# Random Variant
cl_idx = np.random.randint(0, len(pointcloud))
pointcloud = pointcloud[list(pointcloud.keys())[cl_idx]]
position = np.stack((pointcloud['x'], pointcloud['y'], pointcloud['z']), axis=-1)
normal = np.stack((pointcloud['xn'], pointcloud['yn'], pointcloud['zn']), axis=-1)
label = pointcloud['label']
cl_label = pointcloud['cl_idx']
sample_idxs = self.sampling(position)
while sample_idxs.shape[0] < self.sampling_k:
sample_idxs = np.concatenate((sample_idxs, sample_idxs))[:self.sampling_k]
return (normal[sample_idxs].astype(np.float),
position[sample_idxs].astype(np.float),
label[sample_idxs].astype(np.int),
cl_label[sample_idxs].astype(np.int)
)

View File

@ -25,8 +25,9 @@ def run_lightning_loop(config_obj):
# =============================================================================
# Checkpoint Saving
checkpoint_callback = ModelCheckpoint(
monitor='mean_loss',
filepath=str(logger.log_dir / 'ckpt_weights'),
verbose=True, save_top_k=0,
verbose=True, save_top_k=10,
)
# =============================================================================
@ -80,6 +81,9 @@ if __name__ == "__main__":
from _parameters import args
from ml_lib.utils.tools import fix_all_random_seeds
# When debugging, use the following parameters:
# --main_debug=True --data_worker=0
config = ThisConfig.read_namespace(args)
fix_all_random_seeds(config)
trained_model = run_lightning_loop(config)

View File

@ -32,7 +32,7 @@ class _PointNetCore(LightningBaseModule):
def forward(self, sa0_out, **kwargs):
"""
data: a batch of input torch_geometric.data.Data type
sa0_out: a batch of input torch_geometric.data.Data type
- torch_geometric.data.Data, as torch_geometric batch input:
data.x: (batch_size * ~num_points, C), batch nodes/points feature,
~num_points means each sample can have different number of points/nodes

View File

@ -3,7 +3,7 @@ from argparse import Namespace
import torch
from torch import nn
from datasets.full_pointclouds import FullCloudsDataset
from datasets.grid_clusters import GridClusters
from models._point_net_2 import _PointNetCore
from utils.module_mixins import BaseValMixin, BaseTrainMixin, BaseOptimizerMixin, BaseDataloadersMixin, DatasetMixin
@ -23,7 +23,7 @@ class PointNet2(BaseValMixin,
# Dataset
# =============================================================================
self.dataset = self.build_dataset(FullCloudsDataset, setting='pc')
self.dataset = self.build_dataset(GridClusters, setting='pc')
# Model Paramters
# =============================================================================

View File

@ -4,7 +4,7 @@ import torch
from torch import nn
from torch_geometric.data import Data
from datasets.full_pointclouds import FullCloudsDataset
from datasets.grid_clusters import GridClusters
from models._point_net_2 import _PointNetCore
from utils.module_mixins import BaseValMixin, BaseTrainMixin, BaseOptimizerMixin, BaseDataloadersMixin, DatasetMixin
@ -42,7 +42,7 @@ class PointNet2GridClusters(BaseValMixin,
# Dataset
# =============================================================================
self.dataset = self.build_dataset(FullCloudsDataset, setting='grid')
self.dataset = self.build_dataset(GridClusters, setting='grid')
# Model Paramters
# =============================================================================

View File

@ -16,11 +16,11 @@ if __name__ == '__main__':
# Model Settings
config = ThisConfig().read_namespace(args)
# bias, activation, model, norm, max_epochs
pn2 = dict(model_type='PN2',model_use_bias=True, model_use_norm=True, data_batchsize=250)
p2g = dict(model_type='P2G', model_use_bias=True, model_use_norm=True, data_batchsize=250)
pn2 = dict(model_type='PN2', model_use_bias=True, model_use_norm=True, data_batchsize=250)
# p2g = dict(model_type='P2G', model_use_bias=True, model_use_norm=True, data_batchsize=250)
# bias, activation, model, norm, max_epochs
for arg_dict in [p2g]:
for arg_dict in [pn2]:
for seed in range(10):
arg_dict.update(main_seed=seed)

View File

@ -222,6 +222,9 @@ class DatasetMixin:
def build_dataset(self, dataset_class, **kwargs):
assert isinstance(self, LightningBaseModule)
assert dataset_class.name == self.params.dataset_type, f'Check the dataset! ' + \
f'Expected was {self.params.dataset_type}, ' + \
f'given:{dataset_class.name}'
# Dataset
# =============================================================================
@ -258,7 +261,7 @@ class BaseDataloadersMixin(ABC):
# In case you want to implement bootstraping
# sampler = RandomSampler(self.dataset.train_dataset, True, len(self.dataset.train_dataset))
sampler = None
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True if not sampler else None, sampler=sampler,
return DataLoader(dataset=self.dataset.train_dataset, shuffle=False if not sampler else None, sampler=sampler,
batch_size=self.params.batch_size,
num_workers=self.params.worker)