41 lines
1.6 KiB
Python
41 lines
1.6 KiB
Python
import time
|
|
from pathlib import Path
|
|
|
|
import pickle
|
|
from torch.utils.data import Dataset
|
|
|
|
from ml_lib.modules.util import AutoPadToShape
|
|
|
|
|
|
class TorchMelDataset(Dataset):
|
|
def __init__(self, mel_path, sub_segment_len, sub_segment_hop_len, label, audio_file_len,
|
|
sampling_rate, mel_hop_len, n_mels, transform=None, auto_pad_to_shape=True):
|
|
super(TorchMelDataset, self).__init__()
|
|
self.sampling_rate = sampling_rate
|
|
self.audio_file_len = audio_file_len
|
|
self.padding = AutoPadToShape((n_mels , sub_segment_len)) if auto_pad_to_shape else None
|
|
self.path = Path(mel_path)
|
|
self.sub_segment_len = sub_segment_len
|
|
self.mel_hop_len = mel_hop_len
|
|
self.sub_segment_hop_len = sub_segment_hop_len
|
|
self.n = int((self.sampling_rate / self.mel_hop_len) * self.audio_file_len + 1)
|
|
self.offsets = list(range(0, self.n - self.sub_segment_len, self.sub_segment_hop_len))
|
|
self.label = label
|
|
self.transform = transform
|
|
|
|
def __getitem__(self, item):
|
|
while Path(str(self.path).replace(self.path.suffix, '.lock')).exists():
|
|
time.sleep(0.01)
|
|
with self.path.open('rb') as mel_file:
|
|
mel_spec = pickle.load(mel_file, fix_imports=True)
|
|
start = self.offsets[item]
|
|
snippet = mel_spec[: , start: start + self.sub_segment_len]
|
|
if self.transform:
|
|
snippet = self.transform(snippet)
|
|
if self.padding:
|
|
snippet = self.padding(snippet)
|
|
return snippet, self.label
|
|
|
|
def __len__(self):
|
|
return len(self.offsets)
|