ml_lib/experiments.py

68 lines
2.6 KiB
Python

import torchaudio
if sys.platform =='windows':
torchaudio.set_audio_backend('soundfile')
else:
torchaudio.set_audio_backend('sox_io')
class PyTorchAudioToMelDataset(_AudioToMelDataset):
@property
def audio_file_duration(self):
info_obj = torchaudio.info(self.audio_path)
return info_obj.num_frames / info_obj.sample_rate
@property
def sampling_rate(self):
return self.mel_kwargs['sample_rate']
def __init__(self, audio_file_path, *args, **kwargs):
super(PyTorchAudioToMelDataset, self).__init__(audio_file_path, *args, **kwargs)
audio_file_path = Path(audio_file_path)
# audio_file, sampling_rate = librosa.load(self.audio_path, sr=sampling_rate)
from torchaudio.transforms import MelSpectrogram
self._mel_transform = Compose([MelSpectrogram(**self.mel_kwargs),
MelToImage()
])
def _build_mel(self):
if self.reset:
self.mel_file_path.unlink(missing_ok=True)
if not self.mel_file_path.exists():
self.mel_file_path.parent.mkdir(parents=True, exist_ok=True)
lock_file = Path(str(self.mel_file_path).replace(self.mel_file_path.suffix, '.lock'))
lock_file.touch(exist_ok=False)
try:
audio_sample, sample_rate = torchaudio.load(self.audio_path)
except RuntimeError:
import soundfile
data, samplerate = soundfile.read(self.audio_path)
# sf.available_formats()
# sf.available_subtypes()
soundfile.write(self.audio_path, data, samplerate, subtype='PCM_32')
audio_sample, sample_rate = torchaudio.load(self.audio_path)
if sample_rate != self.sampling_rate:
resample = torchaudio.transforms.Resample(orig_freq=int(sample_rate), new_freq=int(self.sampling_rate))
audio_sample = resample(audio_sample)
if audio_sample.shape[0] > 1:
# Transform Stereo to Mono
audio_sample = audio_sample.mean(dim=0, keepdim=True)
mel_sample = self._mel_transform(audio_sample)
with self.mel_file_path.open('wb') as mel_file:
pickle.dump(mel_sample, mel_file, protocol=pickle.HIGHEST_PROTOCOL)
lock_file.unlink()
else:
# print(f"Already existed.. Skipping {filename}")
# mel_file = mel_file
pass
# with mel_file.open(mode='rb') as f:
# mel_sample = pickle.load(f, fix_imports=True)
return self.mel_file_path.exists()