Files
ml_lib/audio_toolset/audio_augmentation.py
2020-05-15 09:43:29 +02:00

23 lines
809 B
Python

import librosa
import numpy as np
class Speed(object):
def __init__(self, max_ratio=0.3, speed_factor=1):
self.speed_factor = speed_factor
self.max_ratio = max_ratio
def __call__(self, x):
if not all([self.speed_factor, self.max_ratio]):
return x
start = int(np.random.randint(0, x.shape[-1],1))
end = int((np.random.uniform(0, self.max_ratio, 1) * x.shape[-1]) + start)
end = min(end, x.shape[-1])
try:
speed_factor = float(np.random.uniform(min(self.speed_factor, 1), max(self.speed_factor, 1), 1))
aug_data = librosa.effects.time_stretch(x[start:end], speed_factor)
return np.concatenate((x[:start], aug_data, x[end:]), axis=0)[:x.shape[-1]]
except ValueError:
return x