ml_lib/point_toolset/sampling.py

52 lines
1.4 KiB
Python

from abc import ABC
import numpy as np
class _Sampler(ABC):
def __init__(self, K, **kwargs):
self.k = K
self.kwargs = kwargs
def __call__(self, *args, **kwargs):
raise NotImplementedError
class RandomSampling(_Sampler):
def __init__(self, *args, **kwargs):
super(RandomSampling, self).__init__(*args, **kwargs)
def __call__(self, pts, *args, **kwargs):
rnd_indexs = np.random.choice(np.arange(pts.shape[0]), min(self.k, pts.shape[0]), replace=False)
return rnd_indexs
class FarthestpointSampling(_Sampler):
def __init__(self, *args, **kwargs):
super(FarthestpointSampling, self).__init__(*args, **kwargs)
@staticmethod
def calc_distances(p0, points):
return ((p0[:3] - points[:, :3]) ** 2).sum(axis=1)
def __call__(self, pts, *args, **kwargs):
if pts.shape[0] < self.k:
return pts
else:
farthest_pts = np.zeros((self.k, pts.shape[1]))
farthest_pts_idx = np.zeros(self.k, dtype=np.int)
farthest_pts[0] = pts[np.random.randint(len(pts))]
distances = self.calc_distances(farthest_pts[0], pts)
for i in range(1, self.k):
farthest_pts_idx[i] = np.argmax(distances)
farthest_pts[i] = pts[farthest_pts_idx[i]]
distances = np.minimum(distances, self.calc_distances(farthest_pts[i], pts))
return farthest_pts_idx