import numpy as np class NoiseInjection(object): def __init__(self, noise_factor: float, sigma=0.5, mu=0.5): assert noise_factor >= 0, f'max_shift_ratio has to be greater then 0, but was: {noise_factor}.' self.mu = mu self.sigma = sigma self.noise_factor = noise_factor def __call__(self, x: np.ndarray): if self.noise_factor: noise = np.random.uniform(0, self.noise_factor, size=x.shape) augmented_data = x + x * noise # Cast back to same data type augmented_data = augmented_data.astype(x.dtype) return augmented_data else: return x class LoudnessManipulator(object): def __init__(self, max_factor: float): assert 1 > max_factor >= 0, f'max_shift_ratio has to be between [0,1], but was: {max_factor}.' self.max_factor = max_factor def __call__(self, x: np.ndarray): if self.max_factor: augmented_data = x + x * (np.random.random() * self.max_factor) # Cast back to same data type augmented_data = augmented_data.astype(x.dtype) return augmented_data else: return x class ShiftTime(object): valid_shifts = ['right', 'left', 'any'] def __init__(self, max_shift_ratio: float, shift_direction: str = 'any'): assert 1 > max_shift_ratio >= 0, f'max_shift_ratio has to be between [0,1], but was: {max_shift_ratio}.' assert shift_direction.lower() in self.valid_shifts, f'shift_direction has to be one of: {self.valid_shifts}' self.max_shift_ratio = max_shift_ratio self.shift_direction = shift_direction.lower() def __call__(self, x: np.ndarray): if self.max_shift_ratio: shift = np.random.randint(max(int(self.max_shift_ratio * x.shape[-1]), 1)) if self.shift_direction == 'right': shift = -1 * shift elif self.shift_direction == 'any': direction = np.random.choice([1, -1], 1) shift = direction * shift augmented_data = np.roll(x, shift) # Set to silence for heading/ tailing shift = int(shift) if shift > 0: augmented_data[:shift] = 0 else: augmented_data[shift:] = 0 return augmented_data else: return x class MaskAug(object): w_idx = -1 h_idx = -2 def __init__(self, duration_ratio_max=0.3, mask_with_noise=True): assertion = f'"duration_ratio" has to be within [0..1], but was: {duration_ratio_max}' if isinstance(duration_ratio_max, (tuple, list)): assert all([0 < max_val < 1 for max_val in duration_ratio_max]), assertion if isinstance(duration_ratio_max, (float, int)): assert 0 <= duration_ratio_max < 1, assertion super().__init__() self.mask_with_noise = mask_with_noise self.duration_ratio_max = duration_ratio_max if isinstance(duration_ratio_max, (tuple, list)) \ else (duration_ratio_max, duration_ratio_max) def __call__(self, x): for dim in (self.w_idx, self.h_idx): if self.duration_ratio_max[dim]: start = int(np.random.choice(x.shape[dim], 1)) v_max = x.shape[dim] * self.duration_ratio_max[dim] size = int(np.random.randint(0, v_max, 1)) end = int(min(start + size, x.shape[dim])) size = end - start if dim == self.w_idx: x[:, start:end] = np.random.random((x.shape[self.h_idx], size)) if self.mask_with_noise else 0 else: x[start:end, :] = np.random.random((size, x.shape[self.w_idx])) if self.mask_with_noise else 0 return x