import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc class ROCEvaluation(object): linewidth = 2 def __init__(self, plot_roc=False): self.plot_roc = plot_roc self.epoch = 0 def __call__(self, prediction, label): # Compute ROC curve and ROC area fpr, tpr, _ = roc_curve(prediction, label) roc_auc = auc(fpr, tpr) if self.plot_roc: _ = plt.gcf() plt.plot(fpr, tpr, color='darkorange', lw=self.linewidth, label=f'ROC curve (area = {roc_auc})') self._prepare_fig() return roc_auc, fpr, tpr def _prepare_fig(self): fig = plt.gcf() ax = plt.gca() plt.plot([0, 1], [0, 1], color='navy', lw=self.linewidth, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') fig.legend(loc="lower right") return fig