import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.modules.loss._WeightedLoss): def __init__(self, weight=None, gamma=2,reduction='mean'): super(FocalLoss, self).__init__(weight,reduction=reduction) self.gamma = gamma self.weight = weight # weight parameter will act as the alpha parameter to balance class weights def forward(self, input, target): ce_loss = F.cross_entropy(input, target, reduction=self.reduction, weight=self.weight) pt = torch.exp(-ce_loss) focal_loss = ((1 - pt) ** self.gamma * ce_loss).mean() return focal_loss class FocalLossRob(nn.Module): # taken from https://github.com/mathiaszinnen/focal_loss_torch/blob/main/focal_loss/focal_loss.py def __init__(self, alpha=1, gamma=2, reduction: str = 'mean'): super().__init__() if reduction not in ['mean', 'none', 'sum']: raise NotImplementedError('Reduction {} not implemented.'.format(reduction)) self.reduction = reduction self.alpha = alpha self.gamma = gamma def forward(self, x, target): x = x.clamp(1e-7, 1. - 1e-7) # own addition p_t = torch.where(target == 1, x, 1-x) fl = - 1 * (1 - p_t) ** self.gamma * torch.log(p_t) fl = torch.where(target == 1, fl * self.alpha, fl) return self._reduce(fl) def _reduce(self, x): if self.reduction == 'mean': return x.mean() elif self.reduction == 'sum': return x.sum() else: return x