import warnings from pathlib import Path from typing import Union import torch from torch import nn from torch.nn import functional as F import sys sys.path.append(str(Path(__file__).parent)) from .util import AutoPad, Interpolate, ShapeMixin, F_x, Flatten DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # # Sub - Modules ################### class LinearModule(ShapeMixin, nn.Module): def __init__(self, in_shape, out_features, use_bias=True, activation=None, use_norm=False, dropout: Union[int, float] = 0, **kwargs): if list(kwargs.keys()): warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}') super(LinearModule, self).__init__() self.in_shape = in_shape self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape) self.dropout = nn.Dropout(dropout) if dropout else F_x(self.flat.shape) self.norm = nn.LayerNorm(self.flat.shape) if use_norm else F_x(self.flat.shape) self.linear = nn.Linear(self.flat.shape, out_features, bias=use_bias) self.activation = activation() if activation else F_x(self.linear.out_features) def forward(self, x): tensor = self.flat(x) tensor = self.dropout(tensor) tensor = self.norm(tensor) tensor = self.linear(tensor.float()) tensor = self.activation(tensor) return tensor class ConvModule(ShapeMixin, nn.Module): def __init__(self, in_shape, conv_filters, conv_kernel, activation: nn.Module = nn.ELU, pooling_size=None, bias=True, use_norm=False, dropout: Union[int, float] = 0, trainable: bool = True, conv_class=nn.Conv2d, conv_stride=1, conv_padding=0, **kwargs): super(ConvModule, self).__init__() assert isinstance(in_shape, (tuple, list)), f'"in_shape" should be a [list, tuple], but was {type(in_shape)}' assert len(in_shape) == 3, f'Length should be 3, but was {len(in_shape)}' if len(kwargs.keys()): warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}') if use_norm and not trainable: warnings.warn('You set this module to be not trainable but the running norm is active.\n' + 'We set it to "eval" mode.\n' + 'Keep this in mind if you do a finetunning or retraining step.' ) # Module Parameters self.in_shape = in_shape self.trainable = trainable in_channels, height, width = in_shape[0], in_shape[1], in_shape[2] # Convolution Parameters self.padding = conv_padding self.stride = conv_stride self.conv_filters = conv_filters self.conv_kernel = conv_kernel # Modules self.activation = activation() or nn.Identity() self.norm = nn.LayerNorm(self.in_shape, eps=1e-04) if use_norm else F_x(None) self.dropout = nn.Dropout2d(dropout) if dropout else F_x(None) self.pooling = nn.MaxPool2d(pooling_size) if pooling_size else F_x(None) self.conv = conv_class(in_channels, self.conv_filters, self.conv_kernel, bias=bias, padding=self.padding, stride=self.stride ) if not self.trainable: for param in self.parameters(): param.requires_grad = False self.norm = self.norm.eval() else: pass def forward(self, x): tensor = self.norm(x) tensor = self.conv(tensor) tensor = self.dropout(tensor) tensor = self.pooling(tensor) tensor = self.activation(tensor) return tensor class PreInitializedConvModule(ShapeMixin, nn.Module): def __init__(self, in_shape, weight_matrix): super(PreInitializedConvModule, self).__init__() self.in_shape = in_shape self.weight_matrix = weight_matrix raise NotImplementedError # ToDo Get the weight_matrix shape and init a conv_module of similar size, # override the weights then. def forward(self, x): x = torch.matmul(x, self.weight_matrix) # ToDo: This is an Placeholder return x class SobelFilter(ShapeMixin, nn.Module): def __init__(self, in_shape): super(SobelFilter, self).__init__() self.in_shape = in_shape self.sobel_x = torch.tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).view(1, 1, 3, 3) self.sobel_y = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, 2, -1]]).view(1, 1, 3, 3) def forward(self, x): # Apply Filters g_x = F.conv2d(x, self.sobel_x) g_y = F.conv2d(x, self.sobel_y) # Calculate the Edge g = torch.add(*[torch.pow(tensor, 2) for tensor in [g_x, g_y]]) # Calculate the Gradient g_grad = torch.atan2(g_x, g_y) return g_x, g_y, g, g_grad class DeConvModule(ShapeMixin, nn.Module): def __init__(self, in_shape, conv_filters, conv_kernel, conv_stride=1, conv_padding=0, dropout: Union[int, float] = 0, autopad=0, activation: Union[None, nn.Module] = nn.ReLU, interpolation_scale=0, bias=True, use_norm=False, **kwargs): super(DeConvModule, self).__init__() warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}') in_channels, height, width = in_shape[0], in_shape[1], in_shape[2] self.padding = conv_padding self.conv_kernel = conv_kernel self.stride = conv_stride self.in_shape = in_shape self.conv_filters = conv_filters self.autopad = AutoPad() if autopad else lambda x: x self.interpolation = Interpolate(scale_factor=interpolation_scale) if interpolation_scale else lambda x: x self.norm = nn.LayerNorm(in_channels, eps=1e-04) if use_norm else F_x(self.in_shape) self.dropout = nn.Dropout2d(dropout) if dropout else F_x(self.in_shape) self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=bias, padding=self.padding, stride=self.stride) self.activation = activation() if activation else lambda x: x def forward(self, x): x = self.norm(x) x = self.dropout(x) x = self.autopad(x) x = self.interpolation(x) tensor = self.de_conv(x) tensor = self.activation(tensor) return tensor class ResidualModule(ShapeMixin, nn.Module): def __init__(self, in_shape, module_class, n, use_norm=False, **module_parameters): assert n >= 1 super(ResidualModule, self).__init__() self.in_shape = in_shape module_parameters.update(in_shape=in_shape) if use_norm: self.norm = nn.LayerNorm(self.in_shape if isinstance(self.in_shape, int) else self.in_shape[0]) else: self.norm = F_x(self.in_shape) self.activation = module_parameters.get('activation', None) if self.activation is not None: self.activation = self.activation() else: self.activation = F_x(self.in_shape) self.residual_block = nn.ModuleList([module_class(**module_parameters) for _ in range(n)]) assert self.in_shape == self.shape, f'The in_shape: {self.in_shape} - must match the out_shape: {self.shape}.' def forward(self, x): tensor = self.norm(x) for module in self.residual_block: tensor = module(tensor) # noinspection PyUnboundLocalVariable tensor = tensor + x tensor = self.activation(tensor) return tensor class RecurrentModule(ShapeMixin, nn.Module): def __init__(self, in_shape, hidden_size, num_layers=1, cell_type=nn.GRU, bias=True, dropout=0): super(RecurrentModule, self).__init__() self.bias = bias self.num_layers = num_layers self.in_shape = in_shape self.hidden_size = hidden_size self.dropout = dropout self.rnn = cell_type(self.in_shape[-1] * self.in_shape[-2], hidden_size, num_layers=num_layers, bias=self.bias, batch_first=True, dropout=self.dropout) def forward(self, x): tensor = self.rnn(x) return tensor class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0., activation=nn.GELU): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), activation() or F_x(None), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), activation() or F_x(None), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads=8, head_dim=64, dropout=0.): super().__init__() inner_dim = head_dim * heads project_out = not (heads == 1 and head_dim == dim) self.heads = heads self.scale = head_dim ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x, mask=None, return_attn_weights=False): from einops import rearrange, repeat # noinspection PyTupleAssignmentBalance b, n, _, h = *x.shape, self.heads qkv = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv) dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale if mask is not None: mask_value = -torch.finfo(dots.dtype).max mask = F.pad(mask.flatten(1), (1, 0), value=True) assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' mask = mask[:, None, :] * mask[:, :, None] mask = repeat(mask, 'b n d -> b h n d', h=h) # My addition dots.masked_fill_(~mask, mask_value) # dots.masked_fill_(mask, mask_value) # My addition del mask attn = dots.softmax(dim=-1) out = torch.einsum('bhij,bhjd->bhid', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) if return_attn_weights: return out, attn else: return out class TransformerModule(ShapeMixin, nn.Module): def __init__(self, in_shape, depth, heads, mlp_dim, head_dim=32, dropout=None, use_norm=False, activation=nn.GELU, use_residual=True): super(TransformerModule, self).__init__() self.in_shape = in_shape self.use_residual = use_residual self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape) self.embedding_dim = self.flat.flat_shape self.norm = nn.LayerNorm(self.embedding_dim) if use_norm else F_x(None) self.attns = nn.ModuleList([Attention(self.embedding_dim, heads=heads, dropout=dropout, head_dim=head_dim) for _ in range(depth)]) self.mlps = nn.ModuleList([FeedForward(self.embedding_dim, mlp_dim, dropout=dropout, activation=activation) for _ in range(depth)]) def forward(self, x, mask=None, return_attn_weights=False, **_): tensor = self.flat(x) attn_weights = list() for attn, mlp in zip(self.attns, self.mlps): # Attention attn_tensor = self.norm(tensor) if return_attn_weights: attn_tensor, attn_weight = attn(attn_tensor, mask=mask, return_attn_weights=return_attn_weights) attn_weights.append(attn_weight) else: attn_tensor = attn(attn_tensor, mask=mask) tensor = tensor + attn_tensor if self.use_residual else attn_tensor # MLP mlp_tensor = self.norm(tensor) mlp_tensor = mlp(mlp_tensor) tensor = tensor + mlp_tensor if self.use_residual else mlp_tensor return (tensor, attn_weights) if return_attn_weights else tensor