Final Train Runs
This commit is contained in:
		| @@ -26,9 +26,15 @@ class MultiClassScores(_BaseScores): | ||||
|         ####################################################################################### | ||||
|         # | ||||
|         # INIT | ||||
|         if isinstance(outputs['batch_y'], torch.Tensor): | ||||
|             y_true = outputs['batch_y'].cpu().numpy() | ||||
|         else: | ||||
|             y_true = torch.cat([output['batch_y'] for output in outputs]).cpu().numpy() | ||||
|         y_true_one_hot = to_one_hot(y_true, self.model.params.n_classes) | ||||
|  | ||||
|         if isinstance(outputs['y'], torch.Tensor): | ||||
|             y_pred = outputs['y'].cpu().numpy() | ||||
|         else: | ||||
|             y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().float().numpy() | ||||
|         y_pred_max = np.argmax(y_pred, axis=1) | ||||
|  | ||||
|   | ||||
| @@ -4,6 +4,7 @@ from pathlib import Path | ||||
| from typing import Union | ||||
|  | ||||
| import torch | ||||
| from performer_pytorch import FastAttention | ||||
| from torch import nn | ||||
| from torch.nn import functional as F | ||||
|  | ||||
| @@ -72,7 +73,7 @@ class ConvModule(ShapeMixin, nn.Module): | ||||
|         self.conv_kernel = conv_kernel | ||||
|  | ||||
|         # Modules | ||||
|         self.activation = activation() or F_x(None) | ||||
|         self.activation = activation() or nn.Identity() | ||||
|         self.norm = nn.LayerNorm(self.in_shape, eps=1e-04) if use_norm else F_x(None) | ||||
|         self.dropout = nn.Dropout2d(dropout) if dropout else F_x(None) | ||||
|         self.pooling = nn.MaxPool2d(pooling_size) if pooling_size else F_x(None) | ||||
| @@ -232,16 +233,20 @@ class FeedForward(nn.Module): | ||||
|  | ||||
|  | ||||
| class Attention(nn.Module): | ||||
|     def __init__(self, dim, heads=8, dropout=0.): | ||||
|     def __init__(self, dim, heads=8, head_dim=64, dropout=0.): | ||||
|         super().__init__() | ||||
|         self.heads = heads | ||||
|         self.scale = dim / heads ** -0.5 | ||||
|         inner_dim = head_dim * heads | ||||
|         project_out = not (heads == 1 and head_dim == dim) | ||||
|  | ||||
|         self.heads = heads | ||||
|         self.scale = head_dim ** -0.5 | ||||
|  | ||||
|         self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) | ||||
|  | ||||
|         self.to_qkv = nn.Linear(dim, dim * 3, bias=False) | ||||
|         self.to_out = nn.Sequential( | ||||
|             nn.Linear(dim, dim), | ||||
|             nn.Linear(inner_dim, dim), | ||||
|             nn.Dropout(dropout) | ||||
|         ) | ||||
|         ) if project_out else nn.Identity() | ||||
|  | ||||
|     def forward(self, x, mask=None, return_attn_weights=False): | ||||
|         # noinspection PyTupleAssignmentBalance | ||||
| @@ -251,9 +256,9 @@ class Attention(nn.Module): | ||||
|         q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv) | ||||
|  | ||||
|         dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale | ||||
|         mask_value = -torch.finfo(dots.dtype).max | ||||
|  | ||||
|         if mask is not None: | ||||
|             mask_value = -torch.finfo(dots.dtype).max | ||||
|             mask = F.pad(mask.flatten(1), (1, 0), value=True) | ||||
|             assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' | ||||
|             mask = mask[:, None, :] * mask[:, :, None] | ||||
| @@ -273,7 +278,7 @@ class Attention(nn.Module): | ||||
|  | ||||
| class TransformerModule(ShapeMixin, nn.Module): | ||||
|  | ||||
|     def __init__(self, in_shape, depth, heads, mlp_dim, dropout=None, use_norm=False, | ||||
|     def __init__(self, in_shape, depth, heads, mlp_dim, head_dim=32, dropout=None, use_norm=False, | ||||
|                  activation=nn.GELU, use_residual=True): | ||||
|         super(TransformerModule, self).__init__() | ||||
|  | ||||
| @@ -283,8 +288,9 @@ class TransformerModule(ShapeMixin, nn.Module): | ||||
|         self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape) | ||||
|  | ||||
|         self.embedding_dim = self.flat.flat_shape | ||||
|         self.norm = nn.LayerNorm(self.embedding_dim) if use_norm else F_x(self.embedding_dim) | ||||
|         self.attns = nn.ModuleList([Attention(self.embedding_dim, heads=heads, dropout=dropout) for _ in range(depth)]) | ||||
|         self.norm = nn.LayerNorm(self.embedding_dim) if use_norm else F_x(None) | ||||
|         self.attns = nn.ModuleList([Attention(self.embedding_dim, heads=heads, dropout=dropout, head_dim=head_dim) | ||||
|                                     for _ in range(depth)]) | ||||
|         self.mlps = nn.ModuleList([FeedForward(self.embedding_dim, mlp_dim, dropout=dropout, activation=activation) | ||||
|                                    for _ in range(depth)]) | ||||
|  | ||||
|   | ||||
| @@ -207,15 +207,11 @@ class ShapeMixin: | ||||
|             return shape | ||||
|  | ||||
|  | ||||
| class F_x(ShapeMixin, nn.Module): | ||||
| class F_x(ShapeMixin, nn.Identity): | ||||
|     def __init__(self, in_shape): | ||||
|         super(F_x, self).__init__() | ||||
|         self.in_shape = in_shape | ||||
|  | ||||
|     @staticmethod | ||||
|     def forward(x): | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class SlidingWindow(ShapeMixin, nn.Module): | ||||
|     def __init__(self, in_shape, kernel, stride=1, padding=0, keepdim=False): | ||||
|   | ||||
							
								
								
									
										23
									
								
								utils/callbacks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								utils/callbacks.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,23 @@ | ||||
| from pytorch_lightning import Callback, Trainer, LightningModule | ||||
|  | ||||
|  | ||||
| class BestScoresCallback(Callback): | ||||
|  | ||||
|     def __init__(self, *monitors) -> None: | ||||
|         super().__init__() | ||||
|         self.monitors = list(*monitors) | ||||
|  | ||||
|         self.best_scores = {monitor: 0.0 for monitor in self.monitors} | ||||
|         self.best_epoch = {monitor: 0 for monitor in self.monitors} | ||||
|  | ||||
|     def on_validation_end(self, trainer: Trainer, pl_module: LightningModule) -> None: | ||||
|         epoch = pl_module.current_epoch | ||||
|  | ||||
|         for monitor in self.best_scores.keys(): | ||||
|             current_score = trainer.callback_metrics.get(monitor) | ||||
|             if current_score is None: | ||||
|                 pass | ||||
|             else: | ||||
|                 self.best_scores[monitor] = max(self.best_scores[monitor], current_score) | ||||
|                 if self.best_scores[monitor] == current_score: | ||||
|                     self.best_epoch[monitor] = max(self.best_epoch[monitor], epoch) | ||||
		Reference in New Issue
	
	Block a user
	 Steffen Illium
					Steffen Illium