Hparams passing with user warnings
This commit is contained in:
@ -3,12 +3,13 @@ import torch
|
||||
from scipy.signal import butter, lfilter
|
||||
|
||||
from ml_lib.modules.utils import AutoPad
|
||||
|
||||
import numpy as np
|
||||
|
||||
def butter_lowpass(cutoff, sr, order=5):
|
||||
nyq = 0.5 * sr
|
||||
normal_cutoff = cutoff / nyq
|
||||
b, a = butter(order, normal_cutoff, btype='low', analog=False)
|
||||
# noinspection PyTupleAssignmentBalance
|
||||
b, a = butter(order, normal_cutoff, btype='low', analog=False, output='ba')
|
||||
return b, a
|
||||
|
||||
|
||||
@ -57,18 +58,19 @@ class NormalizeMelband(object):
|
||||
return x
|
||||
|
||||
|
||||
class AutoPadTransform(object):
|
||||
def __init__(self, **kwargs):
|
||||
self.__dict__.update(kwargs)
|
||||
self.padder = AutoPad()
|
||||
class AutoPadToShape(object):
|
||||
def __init__(self, shape):
|
||||
self.shape = shape
|
||||
|
||||
def __call__(self, y):
|
||||
if not torch.is_tensor(y):
|
||||
y = torch.as_tensor(y)
|
||||
return self.padder(y)
|
||||
def __call__(self, x):
|
||||
if not torch.is_tensor(x):
|
||||
x = torch.as_tensor(x)
|
||||
embedding = torch.zeros(self.shape)
|
||||
embedding[: x.shape] = x
|
||||
return embedding
|
||||
|
||||
def __repr__(self):
|
||||
return 'AutoPadTransform()'
|
||||
return f'AutoPadTransform({self.shape})'
|
||||
|
||||
|
||||
class Melspectogram(object):
|
||||
|
Reference in New Issue
Block a user