ResidualModule and New Parameters, Speed Manipulation

This commit is contained in:
Si11ium 2020-05-12 12:37:25 +02:00
parent f6c6726509
commit dfe2db342f
4 changed files with 132 additions and 63 deletions

View File

@ -1,58 +1,19 @@
import librosa
import numpy as np
class NoiseInjection(object):
class Speed(object):
def __init__(self, noise_factor: float, sigma=0.5, mu=0.5):
assert noise_factor > 0, f'max_shift_ratio has to be greater then 0, but was: {noise_factor}.'
self.mu = mu
self.sigma = sigma
self.noise_factor = noise_factor
def __init__(self, max_ratio=0.3, speed_factor=1):
self.speed_factor = speed_factor
self.max_ratio = max_ratio
def __call__(self, x: np.ndarray):
noise = np.random.normal(loc=self.mu, scale=self.sigma, size=x.shape)
augmented_data = x + self.noise_factor * noise
# Cast back to same data type
augmented_data = augmented_data.astype(x.dtype)
return augmented_data
class LoudnessManipulator(object):
def __init__(self, max_factor: float):
assert 1 > max_factor > 0, f'max_shift_ratio has to be between [0,1], but was: {max_factor}.'
self.max_factor = max_factor
def __call__(self, x: np.ndarray):
augmented_data = x + x * (np.random.random() * self.max_factor)
# Cast back to same data type
augmented_data = augmented_data.astype(x.dtype)
return augmented_data
class ShiftTime(object):
valid_shifts = ['right', 'left', 'any']
def __init__(self, max_shift_ratio: float, shift_direction: str = 'any'):
assert 1 > max_shift_ratio > 0, f'max_shift_ratio has to be between [0,1], but was: {max_shift_ratio}.'
assert shift_direction.lower() in self.valid_shifts, f'shift_direction has to be one of: {self.valid_shifts}'
self.max_shift_ratio = max_shift_ratio
self.shift_direction = shift_direction.lower()
def __call__(self, x: np.ndarray):
shift = np.random.randint(max(int(self.max_shift_ratio * x.shape[-1]), 1))
if self.shift_direction == 'right':
shift = -1 * shift
elif self.shift_direction == 'any':
direction = np.random.choice([1, -1], 1)
shift = direction * shift
augmented_data = np.roll(x, shift)
# Set to silence for heading/ tailing
shift = int(shift)
if shift > 0:
augmented_data[:shift] = 0
else:
augmented_data[shift:] = 0
return augmented_data
def __call__(self, x):
start = int(np.random.randint(0, x.shape[-1],1))
end = min(int((np.random.uniform(0, self.max_ratio, 1) * x.shape[-1]) + start), x.shape[-1])
try:
speed_factor = float(np.random.uniform(min(self.speed_factor, 1), max(self.speed_factor, 1), 1))
aug_data = librosa.effects.time_stretch(x[start:end], speed_factor)
return np.concatenate((x[:start], aug_data, x[end:]), axis=0)[:x.shape[-1]]
except ValueError:
return x

View File

@ -0,0 +1,101 @@
from ctypes import Union
import numpy as np
class NoiseInjection(object):
def __init__(self, noise_factor: float, sigma=0.5, mu=0.5):
assert noise_factor >= 0, f'max_shift_ratio has to be greater then 0, but was: {noise_factor}.'
self.mu = mu
self.sigma = sigma
self.noise_factor = noise_factor
def __call__(self, x: np.ndarray):
if self.noise_factor:
noise = np.random.normal(loc=self.mu, scale=self.sigma, size=x.shape)
augmented_data = x + self.noise_factor * noise
# Cast back to same data type
augmented_data = augmented_data.astype(x.dtype)
return augmented_data
else:
return x
class LoudnessManipulator(object):
def __init__(self, max_factor: float):
assert 1 > max_factor >= 0, f'max_shift_ratio has to be between [0,1], but was: {max_factor}.'
self.max_factor = max_factor
def __call__(self, x: np.ndarray):
if self.max_factor:
augmented_data = x + x * (np.random.random() * self.max_factor)
# Cast back to same data type
augmented_data = augmented_data.astype(x.dtype)
return augmented_data
else:
return x
class ShiftTime(object):
valid_shifts = ['right', 'left', 'any']
def __init__(self, max_shift_ratio: float, shift_direction: str = 'any'):
assert 1 > max_shift_ratio >= 0, f'max_shift_ratio has to be between [0,1], but was: {max_shift_ratio}.'
assert shift_direction.lower() in self.valid_shifts, f'shift_direction has to be one of: {self.valid_shifts}'
self.max_shift_ratio = max_shift_ratio
self.shift_direction = shift_direction.lower()
def __call__(self, x: np.ndarray):
if self.max_shift_ratio:
shift = np.random.randint(max(int(self.max_shift_ratio * x.shape[-1]), 1))
if self.shift_direction == 'right':
shift = -1 * shift
elif self.shift_direction == 'any':
direction = np.random.choice([1, -1], 1)
shift = direction * shift
augmented_data = np.roll(x, shift)
# Set to silence for heading/ tailing
shift = int(shift)
if shift > 0:
augmented_data[:shift] = 0
else:
augmented_data[shift:] = 0
return augmented_data
else:
return x
class MaskAug(object):
w_idx = -1
h_idx = -2
def __init__(self, duration_ratio_max=0.3, mask_with_noise=True):
assertion = f'"duration_ratio" has to be within [0..1], but was: {duration_ratio_max}'
if isinstance(duration_ratio_max, (tuple, list)):
assert all([0 < max_val < 1 for max_val in duration_ratio_max]), assertion
if isinstance(duration_ratio_max, (float, int)):
assert 0 <= duration_ratio_max < 1, assertion
super().__init__()
self.mask_with_noise = mask_with_noise
self.duration_ratio_max = duration_ratio_max if isinstance(duration_ratio_max, (tuple, list)) \
else (duration_ratio_max, duration_ratio_max)
def __call__(self, x):
for dim in (self.w_idx, self.h_idx):
if self.duration_ratio_max[dim]:
start = int(np.random.choice(x.shape[dim], 1))
v_max = x.shape[dim] * self.duration_ratio_max[dim]
size = int(np.random.randint(0, v_max, 1))
end = int(min(start + size, x.shape[dim]))
size = end - start
if dim == self.w_idx:
x[:, start:end] = np.random.random((x.shape[self.h_idx], size)) if self.mask_with_noise else 0
else:
x[start:end, :] = np.random.random((size, x.shape[self.w_idx])) if self.mask_with_noise else 0
return x

View File

@ -15,7 +15,7 @@ DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
###################
class LinearModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, out_features, activation=None, bias=True,
def __init__(self, in_shape, out_features, bias=True, activation=None,
norm=False, dropout: Union[int, float] = 0, **kwargs):
warnings.warn(f'The following arguments have been ignored: \n {list(kwargs.keys())}')
super(LinearModule, self).__init__()
@ -25,10 +25,11 @@ class LinearModule(ShapeMixin, nn.Module):
self.dropout = nn.Dropout(dropout) if dropout else F_x(self.flat.shape)
self.norm = nn.BatchNorm1d(self.flat.shape) if norm else F_x(self.flat.shape)
self.linear = nn.Linear(self.flat.shape, out_features, bias=bias)
self.activation = activation() or F_x(self.linear.out_features)
self.activation = activation() if activation else F_x(self.linear.out_features)
def forward(self, x):
tensor = self.flat(x)
tensor = self.dropout(tensor)
tensor = self.norm(tensor)
tensor = self.linear(tensor)
tensor = self.activation(tensor)
@ -108,12 +109,16 @@ class DeConvModule(ShapeMixin, nn.Module):
class ResidualModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, module_class, n, activation=None, **module_parameters):
def __init__(self, in_shape, module_class, n, **module_parameters):
assert n >= 1
super(ResidualModule, self).__init__()
self.in_shape = in_shape
module_parameters.update(in_shape=in_shape)
self.activation = activation() if activation else lambda x: x
self.activation = module_parameters.get('activation', None)
if self.activation is not None:
self.activation = self.activation()
else:
self.activation = F_x(self.in_shape)
self.residual_block = nn.ModuleList([module_class(**module_parameters) for _ in range(n)])
assert self.in_shape == self.shape, f'The in_shape: {self.in_shape} - must match the out_shape: {self.shape}.'

View File

@ -18,12 +18,14 @@ class ShapeMixin:
@property
def shape(self):
assert isinstance(self, (LightningBaseModule, nn.Module))
x = torch.randn(self.in_shape)
# This is needed for BatchNorm shape checking
x = torch.stack((x, x))
output = self(x)
return output.shape[1:] if len(output.shape[1:]) > 1 else output.shape[-1]
if self.in_shape is not None:
x = torch.randn(self.in_shape)
# This is needed for BatchNorm shape checking
x = torch.stack((x, x))
output = self(x)
return output.shape[1:] if len(output.shape[1:]) > 1 else output.shape[-1]
else:
return -1
class F_x(ShapeMixin, nn.Module):