New Dataset for per spatial cluster training

This commit is contained in:
Si11ium 2020-06-09 14:08:34 +02:00
parent 2acf91335f
commit d3fa32ae7b
2 changed files with 7 additions and 9 deletions

View File

@ -1,3 +1,5 @@
from typing import Union
import torch
from torch_geometric.data import Data
@ -7,15 +9,15 @@ class BatchToData(object):
super(BatchToData, self).__init__()
def __call__(self, batch_x: torch.Tensor, batch_pos: torch.Tensor,
batch_y_l: torch.Tensor, batch_y_c: torch.Tensor):
batch_y_l: Union[torch.Tensor, None] = None, batch_y_c: Union[torch.Tensor, None] = None):
# Convert to torch_geometric.data.Data type
# data = data.transpose(1, 2).contiguous()
batch_size, num_points, _ = batch_x.shape # (batch_size, num_points, 3)
x = batch_x.reshape(batch_size * num_points, -1)
pos = batch_pos.reshape(batch_size * num_points, -1)
batch_y_l = batch_y_l.reshape(batch_size * num_points)
batch_y_c = batch_y_c.reshape(batch_size * num_points)
batch_y_l = batch_y_l.reshape(batch_size * num_points) if batch_y_l is not None else batch_y_l
batch_y_c = batch_y_c.reshape(batch_size * num_points) if batch_y_c is not None else batch_y_c
batch = torch.zeros((batch_size, num_points), device=pos.device, dtype=torch.long)
for i in range(batch_size):
batch[i] = i

View File

@ -19,11 +19,7 @@ class RandomSampling(_Sampler):
super(RandomSampling, self).__init__(*args, **kwargs)
def __call__(self, pts, *args, **kwargs):
if pts.shape[0] < self.k:
return pts
else:
rnd_indexs = np.random.choice(np.arange(pts.shape[0]), self.k, replace=False)
rnd_indexs = np.random.choice(np.arange(pts.shape[0]), min(self.k, pts.shape[0]), replace=False)
return rnd_indexs