Parameter Adjustmens and Ensemble Model Implementation
This commit is contained in:
parent
3c776f13c5
commit
d2e74ff33a
58
audio_toolset/audio_augmentation.py
Normal file
58
audio_toolset/audio_augmentation.py
Normal file
@ -0,0 +1,58 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class NoiseInjection(object):
|
||||
|
||||
def __init__(self, noise_factor: float, sigma=0.5, mu=0.5):
|
||||
assert noise_factor > 0, f'max_shift_ratio has to be greater then 0, but was: {noise_factor}.'
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
self.noise_factor = noise_factor
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
noise = np.random.normal(loc=self.mu, scale=self.sigma, size=x.shape)
|
||||
augmented_data = x + self.noise_factor * noise
|
||||
# Cast back to same data type
|
||||
augmented_data = augmented_data.astype(x.dtype)
|
||||
return augmented_data
|
||||
|
||||
|
||||
class LoudnessManipulator(object):
|
||||
|
||||
def __init__(self, max_factor: float):
|
||||
assert 1 > max_factor > 0, f'max_shift_ratio has to be between [0,1], but was: {max_factor}.'
|
||||
|
||||
self.max_factor = max_factor
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
augmented_data = x + x * (np.random.random() * self.max_factor)
|
||||
# Cast back to same data type
|
||||
augmented_data = augmented_data.astype(x.dtype)
|
||||
return augmented_data
|
||||
|
||||
|
||||
class ShiftTime(object):
|
||||
|
||||
valid_shifts = ['right', 'left', 'any']
|
||||
|
||||
def __init__(self, max_shift_ratio: float, shift_direction: str = 'any'):
|
||||
assert 1 > max_shift_ratio > 0, f'max_shift_ratio has to be between [0,1], but was: {max_shift_ratio}.'
|
||||
assert shift_direction.lower() in self.valid_shifts, f'shift_direction has to be one of: {self.valid_shifts}'
|
||||
self.max_shift_ratio = max_shift_ratio
|
||||
self.shift_direction = shift_direction.lower()
|
||||
|
||||
def __call__(self, x: np.ndarray):
|
||||
shift = np.random.randint(max(int(self.max_shift_ratio * x.shape[-1]), 1))
|
||||
if self.shift_direction == 'right':
|
||||
shift = -1 * shift
|
||||
elif self.shift_direction == 'any':
|
||||
direction = np.random.choice([1, -1], 1)
|
||||
shift = direction * shift
|
||||
augmented_data = np.roll(x, shift)
|
||||
# Set to silence for heading/ tailing
|
||||
shift = int(shift)
|
||||
if shift > 0:
|
||||
augmented_data[:shift] = 0
|
||||
else:
|
||||
augmented_data[shift:] = 0
|
||||
return augmented_data
|
@ -1,5 +1,4 @@
|
||||
import librosa
|
||||
import torch
|
||||
from scipy.signal import butter, lfilter
|
||||
|
||||
import numpy as np
|
||||
@ -36,31 +35,34 @@ class MFCC(object):
|
||||
|
||||
class NormalizeLocal(object):
|
||||
def __init__(self):
|
||||
self.cache: torch.Tensor
|
||||
self.cache: np.ndarray
|
||||
pass
|
||||
|
||||
def __call__(self, x: torch.Tensor):
|
||||
def __call__(self, x: np.ndarray):
|
||||
mean = x.mean()
|
||||
std = x.std()
|
||||
std = x.std() + 0.0001
|
||||
|
||||
x = x.__sub__(mean).__div__(std)
|
||||
x[torch.isnan(x)] = 0
|
||||
x[torch.isinf(x)] = 0
|
||||
# Pytorch Version:
|
||||
# x = x.__sub__(mean).__div__(std)
|
||||
# Numpy Version
|
||||
x = (x - mean) / std
|
||||
x[np.isnan(x)] = 0
|
||||
x[np.isinf(x)] = 0
|
||||
return x
|
||||
|
||||
|
||||
class NormalizeMelband(object):
|
||||
def __init__(self):
|
||||
self.cache: torch.Tensor
|
||||
self.cache: np.ndarray
|
||||
pass
|
||||
|
||||
def __call__(self, x: torch.Tensor):
|
||||
def __call__(self, x: np.ndarray):
|
||||
mean = x.mean(-1).unsqueeze(-1)
|
||||
std = x.std(-1).unsqueeze(-1)
|
||||
|
||||
x = x.__sub__(mean).__div__(std)
|
||||
x[torch.isnan(x)] = 0
|
||||
x[torch.isinf(x)] = 0
|
||||
x[np.isnan(x)] = 0
|
||||
x[np.isinf(x)] = 0
|
||||
return x
|
||||
|
||||
|
||||
|
@ -24,17 +24,6 @@ class F_x(object):
|
||||
|
||||
class ShapeMixin:
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
x = torch.randn(self.in_shape).unsqueeze(0)
|
||||
output: torch.Tensor = self(x)
|
||||
return output.shape[1:]
|
||||
|
||||
|
||||
# Utility - Modules
|
||||
###################
|
||||
class Flatten(nn.Module):
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
try:
|
||||
@ -45,6 +34,11 @@ class Flatten(nn.Module):
|
||||
print(e)
|
||||
return -1
|
||||
|
||||
|
||||
# Utility - Modules
|
||||
###################
|
||||
class Flatten(ShapeMixin, nn.Module):
|
||||
|
||||
def __init__(self, in_shape, to=-1):
|
||||
assert isinstance(to, int) or isinstance(to, tuple)
|
||||
super(Flatten, self).__init__()
|
||||
@ -172,29 +166,6 @@ class LightningBaseModule(pl.LightningModule, ABC):
|
||||
self.apply(weight_initializer)
|
||||
|
||||
|
||||
class BaseModuleMixin_Dataloaders(ABC):
|
||||
|
||||
# Dataloaders
|
||||
# ================================================================================
|
||||
# Train Dataloader
|
||||
def train_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Test Dataloader
|
||||
def test_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.test_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
# Validation Dataloader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
|
||||
batch_size=self.params.batch_size,
|
||||
num_workers=self.params.worker)
|
||||
|
||||
|
||||
class FilterLayer(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
@ -253,7 +224,7 @@ class HorizontalSplitter(nn.Module):
|
||||
self.in_shape = in_shape
|
||||
|
||||
self.channel, self.height, self.width = self.in_shape
|
||||
self.new_height = (self.height // self.n) + 1 if self.height % self.n != 0 else 0
|
||||
self.new_height = (self.height // self.n) + (1 if self.height % self.n != 0 else 0)
|
||||
|
||||
self.shape = (self.channel, self.new_height, self.width)
|
||||
self.autopad = AutoPadToShape(self.shape)
|
||||
|
@ -7,8 +7,7 @@ from argparse import Namespace, ArgumentParser
|
||||
from collections import defaultdict
|
||||
from configparser import ConfigParser
|
||||
from pathlib import Path
|
||||
|
||||
from ml_lib.utils.model_io import ModelParameters
|
||||
import hashlib
|
||||
|
||||
|
||||
def is_jsonable(x):
|
||||
@ -22,6 +21,30 @@ def is_jsonable(x):
|
||||
|
||||
class Config(ConfigParser, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
short_name = "".join(c for c in self.model.type if c.isupper())
|
||||
return f'{short_name}_{self.fingerprint}'
|
||||
|
||||
@property
|
||||
def version(self):
|
||||
return f'version_{self.main.seed}'
|
||||
|
||||
@property
|
||||
def exp_path(self):
|
||||
return Path(self.train.outpath) / self.model.type / self.name
|
||||
|
||||
@property
|
||||
def fingerprint(self):
|
||||
h = hashlib.md5()
|
||||
params = deepcopy(self.as_dict)
|
||||
del params['model']['type']
|
||||
del params['data']['worker']
|
||||
del params['main']
|
||||
h.update(str(params).encode())
|
||||
fingerprint = h.hexdigest()
|
||||
return fingerprint
|
||||
|
||||
@property
|
||||
def _model_weight_init(self):
|
||||
mod = __import__('torch.nn.init', fromlist=[self.model.weight_init])
|
||||
@ -33,8 +56,8 @@ class Config(ConfigParser, ABC):
|
||||
This is function is supposed to return a dict, which holds a mapping from string model names to model classes
|
||||
|
||||
Example:
|
||||
from models.binary_classifier import BinaryClassifier
|
||||
return dict(BinaryClassifier=BinaryClassifier,
|
||||
from models.binary_classifier import ConvClassifier
|
||||
return dict(ConvClassifier=ConvClassifier,
|
||||
)
|
||||
:return:
|
||||
"""
|
||||
@ -46,8 +69,7 @@ class Config(ConfigParser, ABC):
|
||||
try:
|
||||
return self._model_map[self.model.type]
|
||||
except KeyError:
|
||||
raise KeyError(rf'The model alias you provided ("{self.get("model", "type")}") does not exist! \n'
|
||||
f'Try one of these:\n{list(self._model_map.keys())}')
|
||||
raise KeyError(rf'The model alias you provided ("{self.get("model", "type")}") does not exist! Try one of these: {list(self._model_map.keys())}')
|
||||
|
||||
# TODO: Do this programmatically; This did not work:
|
||||
# Initialize Default Sections as Property
|
||||
@ -83,6 +105,7 @@ class Config(ConfigParser, ABC):
|
||||
params.update(self.train.__dict__)
|
||||
assert all(key not in list(params.keys()) for key in self.data.__dict__)
|
||||
params.update(self.data.__dict__)
|
||||
params.update(exp_path=str(self.exp_path), exp_fingerprint=str(self.fingerprint))
|
||||
return params
|
||||
|
||||
@property
|
||||
@ -134,7 +157,6 @@ class Config(ConfigParser, ABC):
|
||||
new_config.read_dict(sorted_dict)
|
||||
return new_config
|
||||
|
||||
|
||||
def build_model(self):
|
||||
return self.model_class(self.model_paramters)
|
||||
|
||||
|
@ -25,7 +25,7 @@ class Logger(LightningLoggerBase, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.config.model.type
|
||||
return self.config.name
|
||||
|
||||
@property
|
||||
def project_name(self):
|
||||
@ -37,7 +37,11 @@ class Logger(LightningLoggerBase, ABC):
|
||||
|
||||
@property
|
||||
def outpath(self):
|
||||
raise NotImplementedError
|
||||
return Path(self.config.train.outpath) / self.config.model.type
|
||||
|
||||
@property
|
||||
def exp_path(self):
|
||||
return Path(self.outpath) / self.name
|
||||
|
||||
def __init__(self, config: Config):
|
||||
"""
|
||||
@ -58,10 +62,12 @@ class Logger(LightningLoggerBase, ABC):
|
||||
self._testtube_kwargs = dict(save_dir=self.outpath, version=self.version, name=self.name)
|
||||
self._neptune_kwargs = dict(offline_mode=self.debug,
|
||||
api_key=self.config.project.neptune_key,
|
||||
experiment_name=self.name,
|
||||
project_name=self.project_name,
|
||||
upload_source_files=list())
|
||||
self.neptunelogger = NeptuneLogger(**self._neptune_kwargs)
|
||||
self.testtubelogger = TestTubeLogger(**self._testtube_kwargs)
|
||||
self.log_config_as_ini()
|
||||
|
||||
def log_hyperparams(self, params):
|
||||
self.neptunelogger.log_hyperparams(params)
|
||||
@ -80,6 +86,10 @@ class Logger(LightningLoggerBase, ABC):
|
||||
def log_config_as_ini(self):
|
||||
self.config.write(self.log_dir / 'config.ini')
|
||||
|
||||
def log_text(self, name, text, step_nb=0, **kwargs):
|
||||
# TODO Implement Offline variant.
|
||||
self.neptunelogger.log_text(name, text, step_nb)
|
||||
|
||||
def log_metric(self, metric_name, metric_value, **kwargs):
|
||||
self.testtubelogger.log_metrics(dict(metric_name=metric_value))
|
||||
self.neptunelogger.log_metric(metric_name, metric_value, **kwargs)
|
||||
@ -97,7 +107,6 @@ class Logger(LightningLoggerBase, ABC):
|
||||
def finalize(self, status):
|
||||
self.testtubelogger.finalize(status)
|
||||
self.neptunelogger.finalize(status)
|
||||
self.log_config_as_ini()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
8
utils/transforms.py
Normal file
8
utils/transforms.py
Normal file
@ -0,0 +1,8 @@
|
||||
from torchvision.transforms import ToTensor as TorchvisionToTensor
|
||||
|
||||
|
||||
class ToTensor(TorchvisionToTensor):
|
||||
|
||||
def __call__(self, pic):
|
||||
tensor = super(ToTensor, self).__call__(pic).float()
|
||||
return tensor
|
Loading…
x
Reference in New Issue
Block a user