Parameter Adjustmens and Ensemble Model Implementation

This commit is contained in:
Si11ium 2020-05-08 16:30:54 +02:00
parent 3c776f13c5
commit d2e74ff33a
6 changed files with 126 additions and 56 deletions

View File

@ -0,0 +1,58 @@
import numpy as np
class NoiseInjection(object):
def __init__(self, noise_factor: float, sigma=0.5, mu=0.5):
assert noise_factor > 0, f'max_shift_ratio has to be greater then 0, but was: {noise_factor}.'
self.mu = mu
self.sigma = sigma
self.noise_factor = noise_factor
def __call__(self, x: np.ndarray):
noise = np.random.normal(loc=self.mu, scale=self.sigma, size=x.shape)
augmented_data = x + self.noise_factor * noise
# Cast back to same data type
augmented_data = augmented_data.astype(x.dtype)
return augmented_data
class LoudnessManipulator(object):
def __init__(self, max_factor: float):
assert 1 > max_factor > 0, f'max_shift_ratio has to be between [0,1], but was: {max_factor}.'
self.max_factor = max_factor
def __call__(self, x: np.ndarray):
augmented_data = x + x * (np.random.random() * self.max_factor)
# Cast back to same data type
augmented_data = augmented_data.astype(x.dtype)
return augmented_data
class ShiftTime(object):
valid_shifts = ['right', 'left', 'any']
def __init__(self, max_shift_ratio: float, shift_direction: str = 'any'):
assert 1 > max_shift_ratio > 0, f'max_shift_ratio has to be between [0,1], but was: {max_shift_ratio}.'
assert shift_direction.lower() in self.valid_shifts, f'shift_direction has to be one of: {self.valid_shifts}'
self.max_shift_ratio = max_shift_ratio
self.shift_direction = shift_direction.lower()
def __call__(self, x: np.ndarray):
shift = np.random.randint(max(int(self.max_shift_ratio * x.shape[-1]), 1))
if self.shift_direction == 'right':
shift = -1 * shift
elif self.shift_direction == 'any':
direction = np.random.choice([1, -1], 1)
shift = direction * shift
augmented_data = np.roll(x, shift)
# Set to silence for heading/ tailing
shift = int(shift)
if shift > 0:
augmented_data[:shift] = 0
else:
augmented_data[shift:] = 0
return augmented_data

View File

@ -1,5 +1,4 @@
import librosa
import torch
from scipy.signal import butter, lfilter
import numpy as np
@ -36,31 +35,34 @@ class MFCC(object):
class NormalizeLocal(object):
def __init__(self):
self.cache: torch.Tensor
self.cache: np.ndarray
pass
def __call__(self, x: torch.Tensor):
def __call__(self, x: np.ndarray):
mean = x.mean()
std = x.std()
std = x.std() + 0.0001
x = x.__sub__(mean).__div__(std)
x[torch.isnan(x)] = 0
x[torch.isinf(x)] = 0
# Pytorch Version:
# x = x.__sub__(mean).__div__(std)
# Numpy Version
x = (x - mean) / std
x[np.isnan(x)] = 0
x[np.isinf(x)] = 0
return x
class NormalizeMelband(object):
def __init__(self):
self.cache: torch.Tensor
self.cache: np.ndarray
pass
def __call__(self, x: torch.Tensor):
def __call__(self, x: np.ndarray):
mean = x.mean(-1).unsqueeze(-1)
std = x.std(-1).unsqueeze(-1)
x = x.__sub__(mean).__div__(std)
x[torch.isnan(x)] = 0
x[torch.isinf(x)] = 0
x[np.isnan(x)] = 0
x[np.isinf(x)] = 0
return x

View File

@ -24,17 +24,6 @@ class F_x(object):
class ShapeMixin:
@property
def shape(self):
x = torch.randn(self.in_shape).unsqueeze(0)
output: torch.Tensor = self(x)
return output.shape[1:]
# Utility - Modules
###################
class Flatten(nn.Module):
@property
def shape(self):
try:
@ -45,6 +34,11 @@ class Flatten(nn.Module):
print(e)
return -1
# Utility - Modules
###################
class Flatten(ShapeMixin, nn.Module):
def __init__(self, in_shape, to=-1):
assert isinstance(to, int) or isinstance(to, tuple)
super(Flatten, self).__init__()
@ -172,29 +166,6 @@ class LightningBaseModule(pl.LightningModule, ABC):
self.apply(weight_initializer)
class BaseModuleMixin_Dataloaders(ABC):
# Dataloaders
# ================================================================================
# Train Dataloader
def train_dataloader(self):
return DataLoader(dataset=self.dataset.train_dataset, shuffle=True,
batch_size=self.params.batch_size,
num_workers=self.params.worker)
# Test Dataloader
def test_dataloader(self):
return DataLoader(dataset=self.dataset.test_dataset, shuffle=True,
batch_size=self.params.batch_size,
num_workers=self.params.worker)
# Validation Dataloader
def val_dataloader(self):
return DataLoader(dataset=self.dataset.val_dataset, shuffle=True,
batch_size=self.params.batch_size,
num_workers=self.params.worker)
class FilterLayer(nn.Module):
def __init__(self):
@ -253,7 +224,7 @@ class HorizontalSplitter(nn.Module):
self.in_shape = in_shape
self.channel, self.height, self.width = self.in_shape
self.new_height = (self.height // self.n) + 1 if self.height % self.n != 0 else 0
self.new_height = (self.height // self.n) + (1 if self.height % self.n != 0 else 0)
self.shape = (self.channel, self.new_height, self.width)
self.autopad = AutoPadToShape(self.shape)

View File

@ -7,8 +7,7 @@ from argparse import Namespace, ArgumentParser
from collections import defaultdict
from configparser import ConfigParser
from pathlib import Path
from ml_lib.utils.model_io import ModelParameters
import hashlib
def is_jsonable(x):
@ -22,6 +21,30 @@ def is_jsonable(x):
class Config(ConfigParser, ABC):
@property
def name(self):
short_name = "".join(c for c in self.model.type if c.isupper())
return f'{short_name}_{self.fingerprint}'
@property
def version(self):
return f'version_{self.main.seed}'
@property
def exp_path(self):
return Path(self.train.outpath) / self.model.type / self.name
@property
def fingerprint(self):
h = hashlib.md5()
params = deepcopy(self.as_dict)
del params['model']['type']
del params['data']['worker']
del params['main']
h.update(str(params).encode())
fingerprint = h.hexdigest()
return fingerprint
@property
def _model_weight_init(self):
mod = __import__('torch.nn.init', fromlist=[self.model.weight_init])
@ -33,8 +56,8 @@ class Config(ConfigParser, ABC):
This is function is supposed to return a dict, which holds a mapping from string model names to model classes
Example:
from models.binary_classifier import BinaryClassifier
return dict(BinaryClassifier=BinaryClassifier,
from models.binary_classifier import ConvClassifier
return dict(ConvClassifier=ConvClassifier,
)
:return:
"""
@ -46,8 +69,7 @@ class Config(ConfigParser, ABC):
try:
return self._model_map[self.model.type]
except KeyError:
raise KeyError(rf'The model alias you provided ("{self.get("model", "type")}") does not exist! \n'
f'Try one of these:\n{list(self._model_map.keys())}')
raise KeyError(rf'The model alias you provided ("{self.get("model", "type")}") does not exist! Try one of these: {list(self._model_map.keys())}')
# TODO: Do this programmatically; This did not work:
# Initialize Default Sections as Property
@ -83,6 +105,7 @@ class Config(ConfigParser, ABC):
params.update(self.train.__dict__)
assert all(key not in list(params.keys()) for key in self.data.__dict__)
params.update(self.data.__dict__)
params.update(exp_path=str(self.exp_path), exp_fingerprint=str(self.fingerprint))
return params
@property
@ -134,7 +157,6 @@ class Config(ConfigParser, ABC):
new_config.read_dict(sorted_dict)
return new_config
def build_model(self):
return self.model_class(self.model_paramters)

View File

@ -25,7 +25,7 @@ class Logger(LightningLoggerBase, ABC):
@property
def name(self):
return self.config.model.type
return self.config.name
@property
def project_name(self):
@ -37,7 +37,11 @@ class Logger(LightningLoggerBase, ABC):
@property
def outpath(self):
raise NotImplementedError
return Path(self.config.train.outpath) / self.config.model.type
@property
def exp_path(self):
return Path(self.outpath) / self.name
def __init__(self, config: Config):
"""
@ -58,10 +62,12 @@ class Logger(LightningLoggerBase, ABC):
self._testtube_kwargs = dict(save_dir=self.outpath, version=self.version, name=self.name)
self._neptune_kwargs = dict(offline_mode=self.debug,
api_key=self.config.project.neptune_key,
experiment_name=self.name,
project_name=self.project_name,
upload_source_files=list())
self.neptunelogger = NeptuneLogger(**self._neptune_kwargs)
self.testtubelogger = TestTubeLogger(**self._testtube_kwargs)
self.log_config_as_ini()
def log_hyperparams(self, params):
self.neptunelogger.log_hyperparams(params)
@ -80,6 +86,10 @@ class Logger(LightningLoggerBase, ABC):
def log_config_as_ini(self):
self.config.write(self.log_dir / 'config.ini')
def log_text(self, name, text, step_nb=0, **kwargs):
# TODO Implement Offline variant.
self.neptunelogger.log_text(name, text, step_nb)
def log_metric(self, metric_name, metric_value, **kwargs):
self.testtubelogger.log_metrics(dict(metric_name=metric_value))
self.neptunelogger.log_metric(metric_name, metric_value, **kwargs)
@ -97,7 +107,6 @@ class Logger(LightningLoggerBase, ABC):
def finalize(self, status):
self.testtubelogger.finalize(status)
self.neptunelogger.finalize(status)
self.log_config_as_ini()
def __enter__(self):
return self

8
utils/transforms.py Normal file
View File

@ -0,0 +1,8 @@
from torchvision.transforms import ToTensor as TorchvisionToTensor
class ToTensor(TorchvisionToTensor):
def __call__(self, pic):
tensor = super(ToTensor, self).__call__(pic).float()
return tensor