bug in metric calculation

This commit is contained in:
Steffen Illium 2021-03-27 16:39:07 +01:00
parent 6816e423ff
commit 1d1b154460
5 changed files with 38 additions and 15 deletions

View File

@ -88,10 +88,7 @@ class LibrosaAudioToMel(object):
def __init__(self, amplitude_to_db=False, power_to_db=False, **mel_kwargs): def __init__(self, amplitude_to_db=False, power_to_db=False, **mel_kwargs):
assert not all([amplitude_to_db, power_to_db]), "Choose amplitude_to_db or power_to_db, not both!" assert not all([amplitude_to_db, power_to_db]), "Choose amplitude_to_db or power_to_db, not both!"
# Mel kwargs are: # Mel kwargs are:
# sr # sr n_mels n_fft hop_length
# n_mels
# n_fft
# hop_length
self.mel_kwargs = mel_kwargs self.mel_kwargs = mel_kwargs
self.amplitude_to_db = amplitude_to_db self.amplitude_to_db = amplitude_to_db

View File

@ -34,10 +34,10 @@ class LibrosaAudioToMelDataset(Dataset):
self.audio_path = Path(audio_file_path) self.audio_path = Path(audio_file_path)
mel_folder_suffix = self.audio_path.parent.parent.name mel_folder_suffix = self.audio_path.parent.parent.name
self.mel_folder = Path(str(self.audio_path)
.replace(mel_folder_suffix, f'{mel_folder_suffix}_mel_folder')).parent.parent
self.mel_file_path = Path(str(self.audio_path) self.mel_file_path = self.mel_folder / f'{self.audio_path.stem}.npy'
.replace(mel_folder_suffix, f'{mel_folder_suffix}_mel_folder')
.replace(self.audio_path.suffix, '.npy'))
self.audio_augmentations = audio_augmentations self.audio_augmentations = audio_augmentations
@ -45,7 +45,7 @@ class LibrosaAudioToMelDataset(Dataset):
self.audio_file_duration, mel_kwargs['sr'], mel_kwargs['hop_length'], self.audio_file_duration, mel_kwargs['sr'], mel_kwargs['hop_length'],
mel_kwargs['n_mels'], transform=mel_augmentations) mel_kwargs['n_mels'], transform=mel_augmentations)
self._mel_transform = Compose([LibrosaAudioToMel(**mel_kwargs), self._mel_transform = Compose([LibrosaAudioToMel(power_to_db=False, **mel_kwargs),
MelToImage() MelToImage()
]) ])

View File

@ -64,9 +64,9 @@ class ShiftTime(_BaseTransformation):
# Set to silence for heading/ tailing # Set to silence for heading/ tailing
shift = int(shift) shift = int(shift)
if shift > 0: if shift > 0:
augmented_data[:shift, :] = 0 augmented_data[:, :shift] = 0
else: else:
augmented_data[shift:, :] = 0 augmented_data[:, shift:] = 0
return augmented_data return augmented_data
else: else:
return x return x

View File

@ -5,6 +5,7 @@ from sklearn.ensemble import IsolationForest
from sklearn.metrics import recall_score, roc_auc_score, average_precision_score from sklearn.metrics import recall_score, roc_auc_score, average_precision_score
from ml_lib.metrics._base_score import _BaseScores from ml_lib.metrics._base_score import _BaseScores
from ml_lib.utils.tools import to_one_hot
class BinaryScores(_BaseScores): class BinaryScores(_BaseScores):
@ -17,16 +18,27 @@ class BinaryScores(_BaseScores):
# Additional Score like the unweighted Average Recall: # Additional Score like the unweighted Average Recall:
######################### #########################
# INIT
if isinstance(outputs['batch_y'], torch.Tensor):
y_true = outputs['batch_y'].cpu().numpy()
else:
y_true = torch.cat([output['batch_y'] for output in outputs]).cpu().numpy()
if isinstance(outputs['y'], torch.Tensor):
y_pred = outputs['y'].cpu().numpy()
else:
y_pred = torch.cat([output['y'] for output in outputs]).squeeze().cpu().float().numpy()
# UnweightedAverageRecall # UnweightedAverageRecall
y_true = torch.cat([output['batch_y'] for output in outputs]) .cpu().numpy() # y_true = torch.cat([output['batch_y'] for output in outputs]).cpu().numpy()
y_pred = torch.cat([output['element_wise_recon_error'] for output in outputs]).squeeze().cpu().numpy() # y_pred = torch.cat([output['element_wise_recon_error'] for output in outputs]).squeeze().cpu().numpy()
# How to apply a threshold manualy # How to apply a threshold manualy
# y_pred = (y_pred >= 0.5).astype(np.float32) # y_pred = (y_pred >= 0.5).astype(np.float32)
# How to apply a threshold by IF (Isolation Forest) # How to apply a threshold by IF (Isolation Forest)
clf = IsolationForest(random_state=self.model.seed) clf = IsolationForest()
y_score = clf.fit_predict(y_pred.reshape(-1,1)) y_score = clf.fit_predict(y_pred.reshape(-1, 1))
y_score = (np.asarray(y_score) == -1).astype(np.float32) y_score = (np.asarray(y_score) == -1).astype(np.float32)
uar_score = recall_score(y_true, y_score, labels=[0, 1], average='macro', uar_score = recall_score(y_true, y_score, labels=[0, 1], average='macro',

View File

@ -44,7 +44,21 @@ try:
def update(self, preds, target) -> None: def update(self, preds, target) -> None:
for _, metric in self: for _, metric in self:
metric.update(preds, target) try:
if self.n_classes <= 2:
metric.update(preds.unsqueeze(-1), target.unsqueeze(-1))
else:
metric.update(preds, target)
except ValueError:
print(f'error was: {ValueError}')
print(f'Metric is: {metric}')
print(f'Shape is: preds - {preds.unsqueeze(-1).shape}, target - {target.shape}')
metric.update(preds.unsqueeze(-1), target)
except AssertionError:
print(f'error was: {AssertionError}')
print(f'Metric is: {metric}')
print(f'Shape is: preds - {preds.shape}, target - {target.unsqueeze(-1).shape}')
metric.update(preds, target.unsqueeze(-1))
def reset(self) -> None: def reset(self) -> None:
for _, metric in self: for _, metric in self: