Transformer Implementation

This commit is contained in:
Si11ium
2020-10-29 16:40:43 +01:00
parent f296ba78b9
commit 13812b83b5
5 changed files with 167 additions and 66 deletions

View File

@ -1,3 +1,5 @@
import math
from pathlib import Path
from typing import Union
@ -142,8 +144,8 @@ class DeConvModule(ShapeMixin, nn.Module):
self.autopad = AutoPad() if autopad else lambda x: x
self.interpolation = Interpolate(scale_factor=interpolation_scale) if interpolation_scale else lambda x: x
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else lambda x: x
self.dropout = nn.Dropout2d(dropout) if dropout else lambda x: x
self.norm = nn.BatchNorm2d(in_channels, eps=1e-04) if norm else F_x(self.in_shape)
self.dropout = nn.Dropout2d(dropout) if dropout else F_x(self.in_shape)
self.de_conv = nn.ConvTranspose2d(in_channels, self.conv_filters, self.conv_kernel, bias=bias,
padding=self.padding, stride=self.stride)
@ -168,8 +170,8 @@ class ResidualModule(ShapeMixin, nn.Module):
self.in_shape = in_shape
module_parameters.update(in_shape=in_shape)
if norm:
self.norm = nn.BatchNorm1d if len(self.in_shape) <= 2 else nn.BatchNorm2d
self.norm = self.norm(self.in_shape if isinstance(self.in_shape, int) else self.in_shape[0])
norm = nn.BatchNorm1d if len(self.in_shape) <= 2 else nn.BatchNorm2d
self.norm = norm(self.in_shape if isinstance(self.in_shape, int) else self.in_shape[0])
else:
self.norm = F_x(self.in_shape)
self.activation = module_parameters.get('activation', None)
@ -181,8 +183,9 @@ class ResidualModule(ShapeMixin, nn.Module):
assert self.in_shape == self.shape, f'The in_shape: {self.in_shape} - must match the out_shape: {self.shape}.'
def forward(self, x):
tensor = self.norm(x)
for module in self.residual_block:
tensor = module(x)
tensor = module(tensor)
# noinspection PyUnboundLocalVariable
tensor = tensor + x
@ -208,3 +211,84 @@ class RecurrentModule(ShapeMixin, nn.Module):
def forward(self, x):
tensor = self.rnn(x)
return tensor
class AttentionModule(ShapeMixin, nn.Module):
def __init__(self,in_shape, features, dropout=0.1):
super().__init__()
self.in_shape = in_shape
self.dropout = dropout
self.features = features
raise NotImplementedError
def forward(self, x):
pass
class MultiHeadAttentionModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, heads, features, dropout=0.1):
super().__init__()
self.in_shape = in_shape
self.features = features
self.heads = heads
self.final_dim = self.features // self.heads
self.linear_q = LinearModule(self.features, self.features)
self.linear_v = LinearModule(self.features, self.features)
self.linear_k = LinearModule(self.features, self.features)
self.dropout = nn.Dropout(dropout) if dropout else F_x(self.features)
self.linear_out = nn.Linear(self.features, self.features)
def forward(self, q, k, v, mask=None):
batch_size = q.size(0)
# perform linear operation and split into h heads
k = self.linear_k(k).view(batch_size, -1, self.heads, self.final_dim)
q = self.linear_q(q).view(batch_size, -1, self.heads, self.final_dim)
v = self.linear_v(v).view(batch_size, -1, self.heads, self.final_dim)
# transpose to get dimensions bs * h * sl * features
# ToDo: Do we need this?
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
# calculate attention
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.final_dim)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = F.softmax(scores, dim=-1)
scores = self.dropout(scores)
scores = torch.matmul(scores, v)
# concatenate heads and apply final linear transformation
# ToDo: This seems to be old coding style. Do we Need this?
concat = scores.transpose(1, 2).contiguous().view(batch_size, -1, self.features)
output = self.out(concat)
return output
class TransformerModule(ShapeMixin, nn.Module):
def __init__(self, in_shape, hidden_size, n_heads, num_layers=1, dropout=None, use_norm=False, **kwargs):
super(TransformerModule, self).__init__()
self.in_shape = in_shape
self.flat = Flatten(self.in_shape) if isinstance(self.in_shape, (tuple, list)) else F_x(in_shape)
encoder_layer = nn.TransformerEncoderLayer(self.flat_shape, n_heads, dim_feedforward=hidden_size,
dropout=dropout, activation=kwargs.get('activation')
)
self.norm = nn.LayerNorm(hidden_size) if use_norm else F_x(hidden_size)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers, )
def forward(self, x, mask=None, key_padding_mask=None):
tensor = self.flat(x)
tensor = self.transformer(tensor, mask, key_padding_mask)
return tensor