masks_augments_compare-21/models/residual_conv_classifier.py
2020-05-15 11:06:23 +02:00

68 lines
3.0 KiB
Python

from argparse import Namespace
from torch import nn
from torch.nn import ModuleList
from ml_lib.modules.blocks import ConvModule, LinearModule, ResidualModule
from ml_lib.modules.utils import LightningBaseModule
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
BaseDataloadersMixin)
class ResidualConvClassifier(BinaryMaskDatasetMixin,
BaseDataloadersMixin,
BaseTrainMixin,
BaseValMixin,
BaseOptimizerMixin,
LightningBaseModule
):
def __init__(self, hparams):
super(ResidualConvClassifier, self).__init__(hparams)
# Dataset
# =============================================================================
self.dataset = self.build_dataset()
# Model Paramters
# =============================================================================
# Additional parameters
self.in_shape = self.dataset.train_dataset.sample_shape
self.conv_filters = self.params.filters
# Modules with Parameters
self.conv_list = ModuleList()
last_shape = self.in_shape
k = 3 # Base Kernel Value
conv_module_params = self.params.module_kwargs
conv_module_params.update(conv_kernel=(k, k), conv_stride=(1, 1), conv_padding=1)
self.conv_list.append(ConvModule(last_shape, self.conv_filters[0], (k, k), conv_stride=(2, 2), conv_padding=1,
**self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
for idx in range(len(self.conv_filters)):
conv_module_params.update(conv_filters=self.conv_filters[idx])
self.conv_list.append(ResidualModule(last_shape, ConvModule, 2, **conv_module_params))
last_shape = self.conv_list[-1].shape
try:
self.conv_list.append(ConvModule(last_shape, self.conv_filters[idx+1], (k, k), conv_stride=(2, 2), conv_padding=2,
**self.params.module_kwargs))
last_shape = self.conv_list[-1].shape
except IndexError:
pass
self.full_1 = LinearModule(self.conv_list[-1].shape, self.params.lat_dim, **self.params.module_kwargs)
self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
self.full_3 = LinearModule(self.full_2.shape, self.full_2.shape // 2, **self.params.module_kwargs)
self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)
def forward(self, batch, **kwargs):
tensor = batch
for conv in self.conv_list:
tensor = conv(tensor)
tensor = self.full_1(tensor)
tensor = self.full_2(tensor)
tensor = self.full_3(tensor)
tensor = self.full_out(tensor)
return Namespace(main_out=tensor)