masks_augments_compare-21/main_inference.py
2020-11-21 09:28:26 +01:00

85 lines
3.0 KiB
Python

from pathlib import Path
import torch
from tqdm import tqdm
import variables as V
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_augmentation import Speed
from ml_lib.audio_toolset.audio_io import AudioToMel, NormalizeLocal, MelToImage
# Dataset and Dataloaders
# =============================================================================
# Transforms
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
from ml_lib.utils.config import Config
from ml_lib.utils.model_io import SavedLightningModels
from ml_lib.utils.transforms import ToTensor
# Datasets
from datasets.binar_masks import BinaryMasksDataset
def prepare_dataloader(config_obj):
mel_transforms = Compose([
AudioToMel(sr=config_obj.data.sr, n_mels=config_obj.data.n_mels, n_fft=config_obj.data.n_fft,
hop_length=config_obj.data.hop_length),
MelToImage()])
transforms = Compose([NormalizeLocal(), ToTensor()])
aug_transforms = Compose([
NoiseInjection(0.4),
LoudnessManipulator(0.4),
ShiftTime(0.3),
MaskAug(0.2),
NormalizeLocal(), ToTensor()
])
dataset: Dataset = BinaryMasksDataset(config_obj.data.root, setting='test',
mel_transforms=mel_transforms, transforms=transforms
)
# noinspection PyTypeChecker
return DataLoader(dataset, batch_size=config_obj.train.batch_size,
num_workers=config_obj.data.worker, shuffle=False)
def restore_logger_and_model(log_dir):
model = SavedLightningModels.load_checkpoint(models_root_path=log_dir, n=-2)
model = model.restore()
if torch.cuda.is_available():
model.cuda()
else:
model.cpu()
return model
if __name__ == '__main__':
outpath = Path('output')
model_type = 'CC'
parameters = 'CC_213adb16e46592c5a405abfbd693835e/'
version = 'version_41'
model_path = Path('/home/steffen/projects/inter_challenge_2020/output/CC/CC_fd2020a7ead9d5c80609a7364741f24b/version_40')
config_filename = 'config.ini'
inference_out = 'manual_test_out.csv'
config = Config()
config.read_file((Path(model_path) / config_filename).open())
test_dataloader = prepare_dataloader(config)
loaded_model = restore_logger_and_model(model_path)
loaded_model.eval()
with (model_path / inference_out).open(mode='w') as outfile:
outfile.write(f'file_name,prediction\n')
for batch in tqdm(test_dataloader, total=len(test_dataloader)):
batch_x, file_name = batch
y = loaded_model(batch_x.unsqueeze(0).to(device='cuda' if torch.cuda.is_available() else 'cpu')).main_out
prediction = (y.squeeze() >= 0.5).int().item()
prediction = 'clear' if prediction == V.CLEAR else 'mask'
outfile.write(f'{file_name},{prediction}\n')
print('Done')