2020-12-01 16:37:16 +01:00

98 lines
3.4 KiB
Python

# Imports
# =============================================================================
from pathlib import Path
import warnings
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from ml_lib.modules.util import LightningBaseModule
from ml_lib.utils.config import Config
from ml_lib.utils.logging import Logger
# Project Specific Logger SubClasses
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
def fix_all_random_seeds(config_obj):
import numpy as np
import torch
import random
np.random.seed(config_obj.main.seed)
torch.manual_seed(config_obj.main.seed)
random.seed(config_obj.main.seed)
def run_lightning_loop(config_obj):
# Logging
# ================================================================================
# Logger
with Logger(config_obj) as logger:
# Callbacks
# =============================================================================
# Checkpoint Saving
ckpt_callback = ModelCheckpoint(
monitor='mean_loss',
filepath=str(logger.log_dir / 'ckpt_weights'),
verbose=False,
save_top_k=5,
)
# Learning Rate Logger
lr_logger = LearningRateMonitor(logging_interval='epoch')
# Trainer
# =============================================================================
trainer = Trainer(max_epochs=config_obj.train.epochs,
weights_save_path=logger.log_dir,
gpus=[0] if torch.cuda.is_available() else None,
check_val_every_n_epoch=10,
# num_sanity_val_steps=config_obj.train.num_sanity_val_steps,
# row_log_interval=(model.n_train_batches * 0.1), # TODO: Better Value / Setting
# log_save_interval=(model.n_train_batches * 0.2), # TODO: Better Value / Setting
checkpoint_callback=True,
callbacks=[lr_logger, ckpt_callback],
logger=logger,
fast_dev_run=config_obj.main.debug,
auto_lr_find=not config_obj.main.debug
)
# Model
# =============================================================================
# Build and Init its Weights
model: LightningBaseModule = config_obj.build_and_init_model()
# Log paramters
pytorch_total_params = sum(p.numel() for p in model.parameters())
logger.log_text('n_parameters', pytorch_total_params)
# Train It
if config_obj.model.type.lower() != 'ensemble':
if not config_obj.main.debug and not config_obj.train.lr:
trainer.tune(model)
# ToDo: LR Finder Plot
# fig = lr_finder.plot(suggest=True)
trainer.fit(model)
# Save the last state & all parameters
trainer.save_checkpoint(str(logger.log_dir / 'weights.ckpt'))
model.save_to_disk(logger.log_dir)
# trainer.run_evaluation(test_mode=True)
return model
if __name__ == "__main__":
from _paramters import main_arg_parser
config = Config.read_argparser(main_arg_parser)
fix_all_random_seeds(config)
trained_model = run_lightning_loop(config)