masks_augments_compare-21/util/metric_reader.py
2020-05-13 22:54:19 +02:00

51 lines
2.2 KiB
Python

import csv
from collections import defaultdict
from pathlib import Path
import numpy as np
from util.config import MConfig
outpath = Path('..', 'output')
metric_file_name = 'metrics.csv'
config_file_name = 'config.ini'
if __name__ == '__main__':
for model_path in outpath.iterdir():
out_file = (model_path / metric_file_name)
for paramter_configuration in model_path.iterdir():
uar_scores = defaultdict(list)
for metric_file in paramter_configuration.rglob(metric_file_name):
with metric_file.open('r') as f:
config = MConfig()
with (metric_file.parent / config_file_name).open('r') as c:
config.read_file(c)
for key, val in config.data.__dict__.items():
uar_scores[key].append(val)
headers = f.readline().split(',')
metric_dict = defaultdict(list)
for line in f:
values = line.split(',')
for header, value in zip(headers, values):
if value:
try:
metric_dict[header].append(float(value))
except ValueError:
metric_dict[header].append(value)
for score, func in zip(['mean', 'max', 'median', 'std'], [np.mean, np.max, np.median, np.std]):
try:
uar_scores[score].append(func(np.asarray(metric_dict['uar_score'])).round(2))
except ValueError as e:
print(e)
pass
file_existed = out_file.exists()
with out_file.open('a+') as f:
headers = list(uar_scores.keys())
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers)
if not file_existed:
writer.writeheader() # file doesn't exist yet, write a header
for row_idx in range(len(uar_scores['mean'])):
writer.writerow({key: uar_scores[key][row_idx] for key in headers})