from argparse import Namespace

from torch import nn
from torch.nn import ModuleList

from ml_lib.modules.blocks import ConvModule, LinearModule, ResidualModule
from ml_lib.modules.util import LightningBaseModule
from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin,
                                BaseDataloadersMixin)


class ResidualConvClassifier(BinaryMaskDatasetMixin,
                             BaseDataloadersMixin,
                             BaseTrainMixin,
                             BaseValMixin,
                             BaseOptimizerMixin,
                             LightningBaseModule
                             ):

    def __init__(self, hparams):
        super(ResidualConvClassifier, self).__init__(hparams)

        # Dataset
        # =============================================================================
        self.dataset = self.build_dataset()

        # Model Paramters
        # =============================================================================
        # Additional parameters
        self.in_shape = self.dataset.train_dataset.sample_shape
        self.conv_filters = self.params.filters

        # Modules with Parameters
        self.conv_list = ModuleList()
        last_shape = self.in_shape
        k = 3  # Base Kernel Value
        conv_module_params = self.params.module_kwargs
        conv_module_params.update(conv_kernel=(k, k), conv_stride=(1, 1), conv_padding=1)
        self.conv_list.append(ConvModule(last_shape, self.conv_filters[0], (k, k), conv_stride=(2, 2), conv_padding=1,
                                         **self.params.module_kwargs))
        last_shape = self.conv_list[-1].shape
        for idx in range(len(self.conv_filters)):
            conv_module_params.update(conv_filters=self.conv_filters[idx])
            self.conv_list.append(ResidualModule(last_shape, ConvModule, 2, **conv_module_params))
            last_shape = self.conv_list[-1].shape
            try:
                self.conv_list.append(ConvModule(last_shape, self.conv_filters[idx+1], (k, k), conv_stride=(2, 2), conv_padding=2,
                                                 **self.params.module_kwargs))
                last_shape = self.conv_list[-1].shape
            except IndexError:
                pass

        self.full_1 = LinearModule(self.conv_list[-1].shape, self.params.lat_dim, **self.params.module_kwargs)
        self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs)
        self.full_3 = LinearModule(self.full_2.shape, self.full_2.shape // 2, **self.params.module_kwargs)

        self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid)

    def forward(self, batch, **kwargs):
        tensor = batch
        for conv in self.conv_list:
            tensor = conv(tensor)
        tensor = self.full_1(tensor)
        tensor = self.full_2(tensor)
        tensor = self.full_3(tensor)
        tensor = self.full_out(tensor)
        return Namespace(main_out=tensor)