from argparse import Namespace import torch from torch import nn from torch.nn import ModuleList from ml_lib.modules.blocks import ConvModule, LinearModule from ml_lib.modules.util import (LightningBaseModule, Splitter) from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin, BaseDataloadersMixin) class BandwiseConvMultiheadClassifier(BinaryMaskDatasetMixin, BaseDataloadersMixin, BaseTrainMixin, BaseValMixin, BaseOptimizerMixin, LightningBaseModule ): def training_step(self, batch_xy, batch_nb, *args, **kwargs): batch_x, batch_y = batch_xy y = self(batch_x) y, bands_y = y.main_out, y.bands bands_y_losses = [self.bce_loss(band_y, batch_y) for band_y in bands_y] return_dict = {f'band_{band_idx}_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)} last_bce_loss = self.bce_loss(y, batch_y) return_dict.update(last_bce_loss=last_bce_loss) bands_y_losses.append(last_bce_loss) combined_loss = torch.stack(bands_y_losses).mean() return_dict.update(loss=combined_loss) return return_dict def validation_step(self, batch_xy, batch_idx, *args, **kwargs): batch_x, batch_y = batch_xy y = self(batch_x) y, bands_y = y.main_out, y.bands bands_y_losses = [self.bce_loss(band_y, batch_y) for band_y in bands_y] return_dict = {f'band_{band_idx}_val_loss': band_y for band_idx, band_y in enumerate(bands_y_losses)} last_bce_loss = self.bce_loss(y, batch_y) return_dict.update(last_val_bce_loss=last_bce_loss) bands_y_losses.append(last_bce_loss) combined_loss = torch.stack(bands_y_losses).mean() return_dict.update(val_bce_loss=combined_loss, batch_idx=batch_idx, y=y, batch_y=batch_y ) return return_dict def __init__(self, hparams): super(BandwiseConvMultiheadClassifier, self).__init__(hparams) # Dataset # ============================================================================= self.dataset = self.build_dataset() # Model Paramters # ============================================================================= # Additional parameters self.in_shape = self.dataset.train_dataset.sample_shape self.conv_filters = self.params.filters self.n_band_sections = 4 k = 3 # Base Kernel Value # Modules # ============================================================================= self.split = Splitter(self.in_shape, self.n_band_sections) self.band_list = ModuleList() for band in range(self.n_band_sections): last_shape = self.split.shape conv_list = ModuleList() for filters in self.conv_filters: conv_list.append(ConvModule(last_shape, filters, (k, k), conv_stride=(2, 2), conv_padding=2, **self.params.module_kwargs)) last_shape = conv_list[-1].shape # self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs)) # last_shape = self.conv_list[-1].shape self.band_list.append(conv_list) self.bandwise_deep_list_1 = ModuleList([ LinearModule(self.band_list[0][-1].shape, self.params.lat_dim, **self.params.module_kwargs) for _ in range(self.n_band_sections)]) self.bandwise_deep_list_2 = ModuleList([ LinearModule(self.params.lat_dim, self.params.lat_dim * 2, **self.params.module_kwargs) for _ in range(self.n_band_sections)]) self.bandwise_latent_list = ModuleList([ LinearModule(self.params.lat_dim * 2, self.params.lat_dim, **self.params.module_kwargs) for _ in range(self.n_band_sections)]) self.bandwise_classifier_list = ModuleList([ LinearModule(self.params.lat_dim, 1, bias=self.params.bias, activation=nn.Sigmoid) for _ in range(self.n_band_sections)]) self.full_1 = LinearModule(self.n_band_sections, self.params.lat_dim, **self.params.module_kwargs) self.full_2 = LinearModule(self.full_1.shape, self.params.lat_dim * 2, **self.params.module_kwargs) self.full_3 = LinearModule(self.full_2.shape, self.params.lat_dim, **self.params.module_kwargs) self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid) def forward(self, batch, **kwargs): tensors = self.split(batch) for idx, (tensor, convs) in enumerate(zip(tensors, self.band_list)): for conv in convs: tensor = conv(tensor) tensor = self.bandwise_deep_list_1[idx](tensor) tensor = self.bandwise_deep_list_2[idx](tensor) tensor = self.bandwise_latent_list[idx](tensor) tensors[idx] = self.bandwise_classifier_list[idx](tensor) tensor = torch.cat(tensors, dim=1) tensor = self.full_1(tensor) tensor = self.full_2(tensor) tensor = self.full_3(tensor) tensor = self.full_out(tensor) return Namespace(main_out=tensor, bands=tensors)