from argparse import Namespace from torch import nn from torch.nn import ModuleList from ml_lib.modules.blocks import ConvModule, LinearModule from ml_lib.modules.util import (LightningBaseModule, Splitter, Merger) from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, BinaryMaskDatasetMixin, BaseDataloadersMixin) class BandwiseConvClassifier(BinaryMaskDatasetMixin, BaseDataloadersMixin, BaseTrainMixin, BaseValMixin, BaseOptimizerMixin, LightningBaseModule ): def __init__(self, hparams): super(BandwiseConvClassifier, self).__init__(hparams) # Dataset # ============================================================================= self.dataset = self.build_dataset() # Model Paramters # ============================================================================= # Additional parameters self.in_shape = self.dataset.train_dataset.sample_shape self.conv_filters = self.params.filters self.n_band_sections = 4 # Modules # ============================================================================= self.split = Splitter(self.in_shape, self.n_band_sections) k = 3 self.band_list = ModuleList() for band in range(self.n_band_sections): last_shape = self.split.shape conv_list = ModuleList() for filters in self.conv_filters: conv_list.append(ConvModule(last_shape, filters, (k,k), conv_stride=(2, 2), conv_padding=2, **self.params.module_kwargs)) last_shape = conv_list[-1].shape # self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs)) # last_shape = self.conv_list[-1].shape self.band_list.append(conv_list) self.merge = Merger(self.band_list[-1][-1].shape, self.n_band_sections) self.full_1 = LinearModule(self.merge.shape, self.params.lat_dim, **self.params.module_kwargs) self.full_2 = LinearModule(self.full_1.shape, self.full_1.shape * 2, **self.params.module_kwargs) self.full_3 = LinearModule(self.full_2.shape, self.full_2.shape // 2, **self.params.module_kwargs) self.full_out = LinearModule(self.full_3.shape, 1, bias=self.params.bias, activation=nn.Sigmoid) def forward(self, batch, **kwargs): tensors = self.split(batch) for idx, (tensor, convs) in enumerate(zip(tensors, self.band_list)): for conv in convs: tensor = conv(tensor) tensors[idx] = tensor tensor = self.merge(tensors) tensor = self.full_1(tensor) tensor = self.full_2(tensor) tensor = self.full_3(tensor) tensor = self.full_out(tensor) return Namespace(main_out=tensor)