import torch from torch import nn from torch.optim import Adam from ml_lib.modules.blocks import ConvModule from ml_lib.modules.utils import LightningBaseModule class BinaryClassifier(LightningBaseModule): @classmethod def name(cls): return cls.__name__ def configure_optimizers(self): return Adam(lr=self.hparams.train.lr) def training_step(self, batch_xy, batch_nb, *args, **kwargs): batch_x, batch_y = batch_xy y = self(batch_y) loss = self.criterion(y, batch_y) return dict(loss=loss) def validation_step(self, batch_xy, **kwargs): batch_x, batch_y = batch_xy y = self(batch_y) val_loss = self.criterion(y, batch_y) return dict(val_loss=val_loss) def validation_epoch_end(self, outputs): over_all_val_loss = torch.mean(torch.stack([output['val_loss'] for output in outputs])) def __init__(self, hparams): super(BinaryClassifier, self).__init__(hparams) self.criterion = nn.BCELoss() # Additional parameters self.in_shape = () # # Model Modules self.conv_1 = ConvModule(self.in_shape, 32, 5, ) self.conv_2 = ConvModule(64) self.conv_3 = ConvModule(128) def forward(self, batch, **kwargs): return batch