import csv from collections import defaultdict from pathlib import Path import numpy as np from util.config import MConfig outpath = Path('..', 'output') metric_file_name = 'metrics.csv' config_file_name = 'config.ini' if __name__ == '__main__': for model_path in outpath.iterdir(): out_file = (model_path / metric_file_name) for paramter_configuration in model_path.iterdir(): uar_scores = defaultdict(list) for metric_file in paramter_configuration.rglob(metric_file_name): with metric_file.open('r') as f: config = MConfig() with (metric_file.parent / config_file_name).open('r') as c: config.read_file(c) for key, val in config.data.__dict__.items(): uar_scores[key].append(val) headers = f.readline().split(',') metric_dict = defaultdict(list) for line in f: values = line.split(',') for header, value in zip(headers, values): if value: try: metric_dict[header].append(float(value)) except ValueError: metric_dict[header].append(value) for score, func in zip(['mean', 'max', 'median', 'std'], [np.mean, np.max, np.median, np.std]): try: uar_scores[score].append(func(np.asarray(metric_dict['uar_score'])).round(2)) except ValueError as e: print(e) pass file_existed = out_file.exists() with out_file.open('a+') as f: headers = list(uar_scores.keys()) writer = csv.DictWriter(f, delimiter=',', lineterminator='\n', fieldnames=headers) if not file_existed: writer.writeheader() # file doesn't exist yet, write a header for row_idx in range(len(uar_scores['mean'])): writer.writerow({key: uar_scores[key][row_idx] for key in headers})