from argparse import Namespace from pathlib import Path import torch from torch import nn from torch.nn import ModuleList from ml_lib.modules.util import LightningBaseModule from ml_lib.utils.config import Config from ml_lib.utils.model_io import SavedLightningModels from util.module_mixins import (BaseOptimizerMixin, BaseTrainMixin, BaseValMixin, DatasetMixin, BaseDataloadersMixin) class Ensemble(DatasetMixin, BaseDataloadersMixin, BaseTrainMixin, BaseValMixin, BaseOptimizerMixin, LightningBaseModule ): def __init__(self, hparams): super(Ensemble, self).__init__(hparams) # Dataset # ============================================================================= self.dataset = self.build_dataset() # Model Paramters # ============================================================================= # Additional parameters self.in_shape = self.dataset.train_dataset.sample_shape self.conv_filters = self.params.filters self.criterion = nn.BCELoss() # Pre_trained_models out_path = Path('output') / self.params.secondary_type # exp_paths = list(out_path.rglob(f'*{self.params.exp_fingerprint}')) exp_paths = list(out_path.rglob('*e87b8f455ba134504b1ae17114ac2a2a')) config_ini_files = sum([list(exp_path.rglob('config.ini')) for exp_path in exp_paths], []) self.model_list = ModuleList() configs = [Config() for _ in range(len(config_ini_files))] for config, ini_file in zip(configs, config_ini_files): config.read_file(ini_file.open('r')) model = SavedLightningModels.load_checkpoint(models_root_path=config.exp_path / config.version).restore() self.model_list.append(model) def forward(self, batch, **kwargs): ys = [model(batch).main_out for model in self.model_list] tensor = torch.stack(ys).mean(dim=0) return Namespace(main_out=tensor)