diff --git a/_paramters.py b/_paramters.py index 83d2b4e..17cac75 100644 --- a/_paramters.py +++ b/_paramters.py @@ -34,8 +34,8 @@ main_arg_parser.add_argument("--data_shift_ratio", type=float, default=0.3, help main_arg_parser.add_argument("--data_noise_ratio", type=float, default=0, help="") # 0.4 main_arg_parser.add_argument("--data_mask_ratio", type=float, default=0, help="") # 0.2 main_arg_parser.add_argument("--data_speed_amount", type=float, default=0, help="") # 0.3 -main_arg_parser.add_argument("--data_speed_min", type=float, default=0, help="") # 0.7 -main_arg_parser.add_argument("--data_speed_max", type=float, default=0, help="") # 1.7 +main_arg_parser.add_argument("--data_speed_min", type=float, default=0.7, help="") # 0.7 +main_arg_parser.add_argument("--data_speed_max", type=float, default=1.7, help="") # 1.7 # Model Parameters main_arg_parser.add_argument("--model_type", type=str, default="RCC", help="") diff --git a/datasets/binar_masks.py b/datasets/binar_masks.py index ea4e3f6..6b0bb08 100644 --- a/datasets/binar_masks.py +++ b/datasets/binar_masks.py @@ -51,7 +51,6 @@ class BinaryMasksDataset(Dataset): additional_dict = ({f'X{key}': val for key, val in labeldict.items()}) additional_dict.update({f'XX{key}': val for key, val in labeldict.items()}) additional_dict.update({f'XXX{key}': val for key, val in labeldict.items()}) - additional_dict.update({f'XXXX{key}': val for key, val in labeldict.items()}) labeldict.update(additional_dict) # Delete File if one exists. diff --git a/multi_run.py b/multi_run.py index 85cede6..3f4191f 100644 --- a/multi_run.py +++ b/multi_run.py @@ -30,21 +30,20 @@ if __name__ == '__main__': all_conf = dict(data_speed_factor=0.7, data_speed_ratio=0.4, data_mask_ratio=0.2, data_noise_ratio=0.4, data_shift_ratio=0.4, data_loudness_ratio=0.4, data_stretch=True, train_epochs=101) - speed_conf = dict(data_speed_factor=0.7, data_speed_ratio=0.4, data_mask_ratio=0.0, - data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0, + speed_conf = raw_conf.copy() + speed_conf.update(data_speed_amount=0.4, data_speed_min=0.7, data_speed_max=1.7, data_stretch=True, train_epochs=101) - mask_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.2, - data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.0, - data_stretch=True, train_epochs=101) - noise_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.0, - data_noise_ratio=0.4, data_shift_ratio=0.0, data_loudness_ratio=0.0, - data_stretch=True, train_epochs=101) - shift_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.0, - data_noise_ratio=0.0, data_shift_ratio=0.4, data_loudness_ratio=0.0, - data_stretch=True, train_epochs=101) - loudness_conf = dict(data_speed_factor=0.0, data_speed_ratio=0.0, data_mask_ratio=0.0, - data_noise_ratio=0.0, data_shift_ratio=0.0, data_loudness_ratio=0.4, - data_stretch=True, train_epochs=101) + mask_conf = raw_conf.copy() + mask_conf.update(data_mask_ratio=0.2, data_stretch=True, train_epochs=101) + + noise_conf = raw_conf.copy() + noise_conf.update(data_noise_ratio=0.4, data_stretch=True, train_epochs=101) + + shift_conf = raw_conf.copy() + shift_conf.update(data_shift_ratio=0.4, data_stretch=True, train_epochs=101) + + loudness_conf = raw_conf.copy() + loudness_conf.update(data_loudness_ratio=0.4, data_stretch=True, train_epochs=101) for dicts in [raw_conf, all_conf, speed_conf, mask_conf, noise_conf, shift_conf, loudness_conf]: